Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{20082009}{242}=82983+\frac{123}{242}\)
\(=82983+\frac{1}{\frac{242}{123}}\)
\(=82983+\frac{1}{1+\frac{119}{123}}\)
\(=82983+\frac{1}{1+\frac{1}{\frac{123}{119}}}\)
\(=82983+\frac{1}{1+\frac{1}{1+\frac{4}{119}}}\)
\(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{\frac{119}{4}}}}\)
\(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{3}{4}}}}\)
\(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{\frac{4}{3}}}}}\)
\(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{3}}}}}\)
\(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{\frac{3}{1}}}}}}\)
\(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{2+\frac{1}{1}}}}}}\)
\(\Rightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e+\frac{1}{f+\frac{1}{g}}}}}}=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{2+\frac{1}{1}}}}}}\)
Cân bằng hệ số ta thu được \(a=82983\)
\(b=1\)
\(c=1\)
\(d=29\)
\(e=1\)
\(f=2\)
\(g=1\)
P/S: e lớp 6 , có gì sai thông cảm ạ =))
\(\frac{20102011}{2012}=9991+\frac{119}{2012}=9991+\frac{1}{\frac{2012}{119}}=9991+\frac{1}{16+\frac{108}{119}}=9991+\frac{1}{16+\frac{1}{\frac{119}{108}}}\)
\(=9991+\frac{1}{16+\frac{1}{1+\frac{11}{108}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{\frac{108}{11}}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{9}{11}}}}\)
=\(=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{\frac{11}{9}}}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{1+\frac{2}{9}}}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{1+\frac{1}{4+\frac{1}{2}}}}}}\)
Nguyễn Thị Linh Chi có thể hướng dẫn cho mình cụ thể chút nữa được không.
Làm sao để \(\frac{20102011}{2012}\)=9991+\(\frac{119}{2012}\)vậy bạn?
(giúp mik nhé, mik cảm ơn nha!)
Áp dụng bất đẳng thức Cauchy- Schwartz ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}\ge\frac{\left(1+1+1+1+1\right)^2}{a+b+c+d+e}=\frac{25}{a+b+c+d+e}\)
Dấu "=" xảy ra khi a = b = c = d = e
mình chỉ làm được bài 2 thôi. bạn có L I K E k để mình làm?
1. Có \(\frac{1}{2n}<\frac{1}{2n-1}<....<\frac{1}{n}\)
=>\(\frac{n}{2n}<\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)
(Vì từ n+1 đến 2n có n số hạng)
=> dpcm
a) \(\left(x-11\right)+\frac{3x}{x-11}=3+\frac{33}{x-11}\)
\(\Leftrightarrow x+\frac{3x}{x-11}-\frac{33}{x-11}=14\)
\(\Leftrightarrow x^2-11x+3x-33=14x-154\)
\(\Leftrightarrow x^2-22x+121=0\)
\(\Leftrightarrow\left(x-11\right)^2=0\Leftrightarrow x=11\)
Vậy .......
b) \(\frac{7-2x}{x-1}=\frac{1-4x}{x+2}\Leftrightarrow\left(7-2x\right)\left(x+2\right)=\left(1-4x\right)\left(x-1\right)\)
\(\Leftrightarrow7x-2x^2+14-4x=x-4x^2-1+4x\)
\(\Leftrightarrow2x^2=-15\)(vô lí)
Vậy pt vô nghiệm
c) \(\frac{3-2x}{x+1}=2+\frac{1-4x}{x-2}\)
\(\Leftrightarrow\left(3-2x\right)\left(x-2\right)=2\left(x+1\right)\left(x-2\right)+\left(1-4x\right)\left(x+1\right)\)
\(\Leftrightarrow3x-2x^2-6x+4x=2x^2+2x-4x-4+x-4x^2+1-4x\)
\(\Leftrightarrow6x=-3\Leftrightarrow x=-\frac{1}{2}\)
Vậy.........
(gửi trước 3 câu)
d) \(\frac{109x-4}{111x+1}-1=0\Leftrightarrow109x-4=111x+1\Leftrightarrow2x=-5\Leftrightarrow x=-\frac{5}{2}\)
Vậy x=-5/2
e) \(\frac{x^2-7}{x}=x-\frac{1}{2}\Leftrightarrow\frac{x^2-7}{x}-\frac{x^2}{x}=-\frac{1}{2}\Leftrightarrow-\frac{7}{x}=\frac{1}{2}\Leftrightarrow x=-14\)
f) \(\frac{x+1}{x+2}=3\Leftrightarrow x+1=3x+6\Leftrightarrow2x=7\Leftrightarrow x=\frac{7}{2}\)
a, (x-5).(x-1) >0
<=> x-5>0 và x-1>0
<=> x-5>0
<=> x>5
x-1>0
<=> x>1
Vậy x>5
b, (2x-3).(x+1) <0
<=> 2x-3<0 và x+1<0
2x-3<0 <=> 2x<3 <=> x<2/3
x+1<0 <=> x<-1
Vậy x<2/3
c, 2x2 - 3x +1>0
<=> 2x2 - 2x- x +1>0
<=>(x-1). (2x-1) >0
<=> x-1>0 và 2x-1>0
x-1>0 <=> x>1
2x-1>0 <=> 2x>1 <=> x>1/2
Vậy x>1/2