K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

2.

pt <=> (x/2000 - 1) + (x+1/2001 - 1) + (x+2/2002 - 1) + (x+3/2003 - 1) + (x+4/2004 - 1 ) = 0

<=> x-2000/2000 + x-2000/2001 + x-2000/2002 + x-2000/2003 + x-2000/2004 = 0

<=> (x-2000).(1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004) = 0

<=> x-2000=0 ( vì 1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004 > 0 )

<=> x=2000

Tk mk nha

2 tháng 3 2018

1.

a, = (2x-1)^2-2.(2x-1)+1-4

    = (2x-1-1)^2-4

    = (2x-2)^2-4

    = (2x-2-2).(2x-2+2)

    = 2x.(2x-4)

b, = [x.(x+3)].[(x+1).(x+2)]

    = (x^2+3x).(x^2+3x+1)-8

    = (x^2+3x+1)^2-1-8

    = (x^2+3x+1)^2-9

    = (x^2+3x+1-3).(x^2+3x+1+3)

    = (x^2+3x-2).(x^2+3x+4)

    = ((x+1).(x+3).(x^2+3x-2)

Tk mk nha

19 tháng 7 2019

\(x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}=\left(x+\frac{1}{2}\right)^3\)

Bạn ghi sai đề nha

Hok tốt

19 tháng 7 2019

\(x^3+\frac{3}{2}x^2+\frac{3}{2}x+\frac{1}{8}\)

\(=\left(x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}\right)+\frac{3}{2}x-\frac{3}{4}x\)

\(=\left(x+\frac{1}{2}\right)^3+\frac{3}{4}x\)

\(=\left(x+\frac{1}{2}\right)^3+\left(\sqrt[3]{\frac{3}{4}x}\right)^3\)

\(=\left(x+\frac{1}{2}+\sqrt[3]{\frac{3}{4}x}\right)\left[\left(x+\frac{1}{2}\right)^2-\left(x+\frac{1}{2}\right)\left(\sqrt[3]{\frac{3}{4}}\right)+\left(\sqrt[3]{\frac{3}{4}}\right)^2\right]\)

30 tháng 5 2017

x^3-5x2+8x-4=x3-2x2-3x2+6x+2x-4=x2(x-2)-3x(x-2)+2(x-2)
=(x-2)(x2-3x+2)
=(x-2)(x2-2x-x+2)=(x-2)(x-2)(x-1)=(x-2)2(x-1)

30 tháng 5 2017

pn ơi phan b pn kiểm tra  lại đi

14 tháng 2 2016

moi hok lop 6

14 tháng 2 2016

Xem lại cái dề ban ơi cau 1 dấy

 

20 tháng 4 2017

a.(x+1)(x+2)(x+3)(x+4)-24=[(x+1)(x+4)][(x+2)(x+3)]-24=(\(x^2+5x+4\))(\(x^2+5x+6\))-24  (1)

đặt \(x^2+5x+5=a\)ta có (1)=(a-1)(a+1)-24=\(a^2-25=\left(a-5\right)\left(a+5\right)\)

thay a=\(x^2+5x+5\)vào (1) ta có (1)=(\(x^2+5x\)+5-5)(\(x^2+5x\)+5+5)=x(x+5)(\(x^2\)+5x+10)

b.ta có :\(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}=\frac{2a+3a^2+a^3}{6}=\frac{a\left(a^2+3a+2\right)}{6}\)=\(\frac{a\left(a^2+2a+a+2\right)}{6}=\frac{a\left(a+1\right)\left(a+2\right)}{6}\).ta lại có a(a+1)(a+2) là tích 3 số nguyên liên tiếp luôn chia hết cho 6 suy ta điều cần cm

6 tháng 10 2018

\(\frac{2}{3}x-\frac{1}{9}x^2-1\)

\(=-\left(\frac{1}{9}x^2-\frac{2}{3}x+1\right)\)

\(=-\left[\left(\frac{1}{3}x\right)^2-2\cdot\frac{1}{3}x\cdot1+1^2\right]\)

\(=-\left(\frac{1}{3}x-1\right)^2\)