Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(49-x^2+2xy-y^2\)
\(=49-\left(x^2-2xy+y^2\right)\)
\(=49-\left(x-y\right)^2\)
\(=\left(7-x+y\right)\left(7+x-y\right)\)
c) \(\frac{1}{36}a^2-\frac{1}{4}b^2\)
\(=\frac{1}{4}\left(\frac{1}{9}a^2-b^2\right)\)
\(=\frac{1}{4}\left(\frac{1}{3}a-b\right)\left(\frac{1}{3}a+b\right)\)
Câu 1:
Ta có phương trình: \(x^2-4x+6=\frac{21}{x^2-4x+10}\)
<=> \(\left(x^2-4x+6\right)\left(x^2-4x+10\right)=21\)
<=> \(\left(x^2-4x+8\right)^2-4=21\)
<=> \(\left(x^2-4x+8\right)^2=25\)
<=> \(x^2-4x+8=\pm5\)
<=> \(\orbr{\begin{cases}x^2-4x+3=0\\x^2-4x+13=0\end{cases}}\)
2 phương trình này bạn bấm máy tính là ra nghiệm nha :) Mình làm hơi tắt :0
Câu 3:
Ta sẽ sử dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức: Với a, b, x, y thuộc R thì \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)
Dấu "=" xảy ra <=> \(\frac{a}{x}=\frac{b}{y}\)
Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức ta có:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
=> \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)=> đpcm
Câu 4:
Do x > 0 nên ta có: \(x+\frac{1}{x}-2=\left(\sqrt{x}\right)^2-2+\left(\frac{1}{\sqrt{x}}\right)^2=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\ge0\forall x>0\)
=> \(x+\frac{1}{x}-2\ge0\Rightarrow x+\frac{1}{x}\ge2\)
=> đpcm
a, P là snt > 3 => \(\left(p-1\right)\left(p+1\right)\)là tích 2 số chẵn liên tiếp ( p-1 >= 4 )
nên sẽ tồn tại 1 bội của 4 giả sử số đó là p+1
S uy ra \(p+1⋮4;p-1⋮2=>\left(p+1\right)\left(p-1\right)⋮8\)
Do P là snt lẻ > 3 => P sẽ có dạng 3k+1 hoặc 3k+2
rồi thay vồ => đpcm
\(x^2+xy-2019x-2020y-2021=x^2+xy+x-\left(2020x+2020y+2020\right)-1\)
\(=x\left(x+y+1\right)-2020\left(x+y+1\right)-1=\left(x-2020\right)\left(x+y+1\right)-1\)
làm tắt xíu :))
dễ mà cô nương
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)
\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)
ta có
\(a=-5-b\)
suy ra
\(a^3-b^3=19\left(-5-2b\right)\) " xong "
2, trên mạng đầy
3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)
4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm
5. trên mạng đầy
6 , trên mang jđầy
a) \(x^3-5x^2+8x-4\)
\(=x^3-2x^2-3x^2+6x+2x-4\)
\(=x^2\left(x-2\right)-3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-3x+2\right)\)
\(=\left(x-2\right)\left(x^2-x-2x+2\right)\)
\(=\left(x-2\right)\left[x\left(x-1\right)-2\left(x-1\right)\right]\)
\(=\left(x-2\right)\left(x-1\right)\left(x-2\right)\)
b) \(A=10x^2-15x+8x-12+7\)
\(A=5x\left(2x-3\right)+4\left(2x-3\right)+7\)
\(A=\left(2x-3\right)\left(5x+4\right)+7\)
Dễ thấy \(\left(2x-3\right)\left(5x+4\right)⋮\left(2x-3\right)=B\)
Vậy để \(A⋮B\)thì \(7⋮\left(2x-3\right)\)
\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x\in\left\{2;1;5;-2\right\}\)
Vậy.......
a.(x+1)(x+2)(x+3)(x+4)-24=[(x+1)(x+4)][(x+2)(x+3)]-24=(\(x^2+5x+4\))(\(x^2+5x+6\))-24 (1)
đặt \(x^2+5x+5=a\)ta có (1)=(a-1)(a+1)-24=\(a^2-25=\left(a-5\right)\left(a+5\right)\)
thay a=\(x^2+5x+5\)vào (1) ta có (1)=(\(x^2+5x\)+5-5)(\(x^2+5x\)+5+5)=x(x+5)(\(x^2\)+5x+10)
b.ta có :\(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}=\frac{2a+3a^2+a^3}{6}=\frac{a\left(a^2+3a+2\right)}{6}\)=\(\frac{a\left(a^2+2a+a+2\right)}{6}=\frac{a\left(a+1\right)\left(a+2\right)}{6}\).ta lại có a(a+1)(a+2) là tích 3 số nguyên liên tiếp luôn chia hết cho 6 suy ta điều cần cm