K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2020

\(A=\frac{1}{2016.2015}+\frac{1}{2015.2014}+\frac{1}{2014.2013}+...+\frac{1}{1.2}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(=1-\frac{1}{2016}=\frac{2015}{2016}\)

Vậy \(A=\frac{2015}{2016}\).

3 tháng 5 2020

Mình viết ngược lại cho dễ làm xD

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}+\frac{1}{2015\cdot2016}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(A=\frac{1}{1}-\frac{1}{2016}\)

\(A=\frac{2015}{2016}\)

Sai thì bỏ quá :3

27 tháng 7 2016

\(\frac{1}{2}-\frac{1}{2016.2015}-\frac{1}{2015.2014}-...-\frac{1}{3.2}\)

\(=\frac{1}{2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{2016}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{2016}\)

\(=\frac{1}{2016}\)

27 tháng 7 2016

\(\frac{1}{2}-\frac{1}{2016.2015}-\frac{1}{2015.2014}-...-\frac{1}{3.2}\)

\(=\frac{1}{2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{2016}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{2016}\)

\(=0+\frac{1}{2016}=\frac{1}{2016}\)

28 tháng 7 2016

Toán lớp 6

b: \(=\dfrac{1}{2}-\left(\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{2016}=\dfrac{1}{2016}\)

29 tháng 7 2020

5/4:1/4:(11/6-3/2)+1

5/4:1/4:1/3+1

5/4.4/1:1/3+1

5/4.4/1.3/1+1

5.1/3+1

5/3+1

5/3+1/1

5/3+3/3

8/3

29 tháng 7 2020

\(125\%.\left(-\frac{1}{2}\right)^2:\left(1\frac{5}{6}-1,5\right)\)

\(=\frac{5}{4}.\left(-\frac{1}{2}\right)^2:\left(\frac{11}{6}-1,5\right)\)

\(=\frac{5}{4}.\frac{1}{4}:\left(\frac{11}{6}-\frac{3}{2}\right)\)

\(=\frac{5}{4}.\frac{1}{4}:\frac{1}{3}\)

\(=\frac{5}{4}:\frac{3}{4}=\frac{5}{3}\)

b, \(|\frac{2}{3}x-\frac{1}{2}|=\frac{5}{6}\)

\(\frac{2}{3}x-\frac{1}{2}=\frac{5}{6}\)hoặc\(-\frac{5}{6}\)

\(\frac{2}{3x}=\frac{5}{6}+\frac{1}{2}\)hoặc \(\frac{2}{3}x=-\frac{5}{6}+\frac{1}{2}\)

\(\frac{2}{3}x=\frac{4}{3}\)hoặc \(-\frac{1}{3}\)

\(x=\frac{4}{3}:\frac{2}{3}\)hoặc \(-\frac{1}{3}:\frac{2}{3}\)

\(x=2\)hoặc \(-\frac{1}{2}\)

Bài 2: 

\(=\frac{2017}{2016}\)

Bài 3 :

O x y z t

a, trên cùng một nửa mặt phẳng bờ chứa tia Ox, tia Oz nằm giữa 2 tia còn lại . Vì \(\widehat{xOz}< \widehat{xOy}\left(100< 50\right)\)

b, Vì tia Oz nằm giữa 2 tia còn lại nên ta có :

\(\widehat{yOz}+\widehat{zOx}=\widehat{xOy}\)

\(\widehat{yOz}+50=100\)

\(\widehat{yOz}=100-50=50\)

Vậy tia Oz là tia phân giác của góc \(\widehat{xOy}\).Vì tia Oz nằm giữa 2 tia còn lại và 2 góc yOz và zOx bằng nhau = 50

c, Vì tia Ot là tia đối của Ox nên có số đo là 180 nên \(\Rightarrow\)\(\widehat{xOt}=180\)

13 tháng 6 2016

ko pit làm

30 tháng 7 2020

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2013.2014}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2013}+\frac{1}{2014}-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2014}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2013}+\frac{1}{2014}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1007}\right)\)

\(=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\)

Lại có B = \(\frac{1}{1008.2014}+\frac{1}{1009.2013}+\frac{1}{1010.2012}+...+\frac{1}{2014.1008}\)

=> 3022B = \(\frac{3022}{1008.2014}+\frac{3022}{1009.2013}+\frac{3022}{1010.2012}+...+\frac{3022}{2014.1008}\)

\(=\frac{1}{1008}+\frac{1}{2014}+\frac{1}{1009}+\frac{1}{2013}+\frac{1}{1010}+\frac{1}{2012}+...+\frac{1}{2014}+\frac{1}{1008}\)

\(=2.\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)

=> \(B=\frac{1}{1511}.\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)

Khi đó \(\frac{A}{B}=\frac{\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\right)}{\frac{1}{1511}.\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\right)}=\frac{1}{\frac{1}{1511}}=1511\)

=> \(\frac{A}{B}=1511\)

=> A/B là 1 số nguyên (đpcm)

20 tháng 2 2017

\(=\frac{2013}{2014}\)

20 tháng 2 2017

\(\frac{2013}{2014}\)