K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2017

Đáp án D

Theo định luật bảo toàn số khối ta có X có khối lượng 6u.

Vì hạt bay ra có phương vuông góc với p ban đầu, áp dụng định luật bảo toàn động lượng cho ta

P x 2 = P α 2 + P P 2 ; mà ta cũng có p 2 = 2 m k  nên

  m X K x = m α K α + m P K P ⇒ K X = 3 , 575

Từ định luật bảo toàn năng lượng toàn phần và định nghĩa năng lượng tỏa ra ta có năng lượng tỏa ra

W t = K X + K α - K P = 3 , 575 + - 5 , 45 = 2 , 125 M e V

13 tháng 4 2016

\(_1^1p + _4^9Be \rightarrow _2^4He + _3^6X\)

Áp dụng định luật bảo toàn động lượng \(\overrightarrow P_p+0 =\overrightarrow P_{He}+ \overrightarrow P_{X} \)(hạt nhân Be đứng yên)

Dựa vào hình vẽ ta có

  P P P He X p

     \(P_{p}^2+ P_{He}^2 = P_X^2\)

=> \(2m_{p}K_{p}+2m_{He} K_{He} = 2m_{X}K_{X}. \)

=> \(K_{p}+4K_{He} = 6K_{X} => K_X = 3,575MeV.\)

Áp dụng định luật bảo toàn năng lượng toàn phần (hạt nhân Be đứng yên)

        \(K_{p}+m_{p}c^2+m_{Be}c^2 = K_{He} + m_{He}c^2+ K_{X}+m_{X}c^2\)

=> \((m_p-m_{He}-m_{X})c^2= K_{He}+K_X-K_p= 2,125MeV\)

Như vậy năng lượng tỏa ra của phản ứng chính bằng hiệu động năng của các hạt sau phản ứng cho động năng của các hạt trước phản ứng và bằng 2,125 MeV.

 

13 tháng 4 2016

đáp án D. 2,125MeV

4 tháng 2 2019

Ta có phản ứng hạt nhân

Giải sách bài tập Vật Lí 12 | Giải sbt Vật Lí 12

hạt nhân X là hạt nhân Liti. Theo định luật bảo toàn động lượng

Giải sách bài tập Vật Lí 12 | Giải sbt Vật Lí 12

Vì phương của vận tốc hạt α vuông góc với phương vận tốc của hạt proton nên ta có

Giải sách bài tập Vật Lí 12 | Giải sbt Vật Lí 12

Có thể viết lại hệ thức trên

Giải sách bài tập Vật Lí 12 | Giải sbt Vật Lí 12

Ta có

Giải sách bài tập Vật Lí 12 | Giải sbt Vật Lí 12 là động năng của proton

Giải sách bài tập Vật Lí 12 | Giải sbt Vật Lí 12 là động năng của hạt  α

Giải sách bài tập Vật Lí 12 | Giải sbt Vật Lí 12 là động năng hạt Li

Phương trình trên thành ra : 5,45 + 4.4 = 6 W đ L i

Ta tính được động năng của hạt nhân Li là  W đ L i  = 3,575 MeV.

Tổng động năng của các hạt trước phản ứng là 5,45 MeV ; còn tổng động năng của các hạt sau phản ứng là 4 + 3,575 = 7,575 MeV.

Lượng động năng dôi ra này được lấy từ độ hụt khối của các hạt nhân tham gia phản ứng. Như vậy, phản ứng này đã toả ra một năng lượng là :

7,575 - 5,45 = 2,125 MeV

23 tháng 10 2018

Đáp án A

13 tháng 4 2016

\(_1^1p + _4^9Be \rightarrow _2^4He + _3^6X\)

Áp dụng định luật bảo toàn động lượng \(\overrightarrow P_p=\overrightarrow P_{He}+ \overrightarrow P_{X} \) (do hạt Be đứng yên)

PPPHeXp

Dựa vào hình vẽ ta có \(P_{p}^2+ P_{He}^2 = P_X^2\)

=> \(2m_{p}K_{p}+2m_{He} K_{He} = 2m_{X}K_{X}. \)

=> \(K_{p}+4K_{He} = 6K_{X} => K_X = 6MeV.\)

V
violet
Giáo viên
11 tháng 4 2016

\(_1^1p + _4^9Be \rightarrow \alpha + _3^6Li\)

Phản ứng này thu năng lượng => \(W_{thu} =(m_s-m_t)c^2 = K_t-K_s\)

=> \( K_p+ K_{Be}-K_{He}- K_{Li} = W_{thu} \) (do Be đứng yên nên KBe = 0)

=> \(K_p = W_{thu}+K_{Li}+K_{He} = 2,125+4+3,575 = 9,7MeV.\)

Áp dụng định luật bảo toàn động lượng

P P P α α p Li

\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)

Dựa vào hình vẽ ta có 

Áp dụng định lí hàm cos trong tam giác

=> \(\cos {\alpha} = \frac{P_p^2+P_{He}^2-P_{Li}^2}{2P_pP_{He}} = \frac{2.1.K_p+ 2.4.K_{He}-2.6.K_{Li}}{2.2.2m_pm_{He}K_pK_{He}} = 0.\)

Với  \(P^2 = 2mK, m=A.\).

=> \(\alpha = 90^0.\)

 

6 tháng 4 2016

\(\alpha + _7^{14}N \rightarrow _1^1p + _8^{17}O\)

\(m_t-m_s = m_{\alpha}+m_N - (m_{O}+m_p) =- 1,3.10^{-3}u < 0\), phản ứng thu năng lượng.

\(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)

=> \(1,3.10^{-3}.931,5 = K_{He}+K_N- (K_p+K_O)\)(do Nito đứng yên nên KN = 0)

=> \(K_p +K_O = 6,48905MeV. (1)\)

Áp dụng định luật bảo toàn động lượng

P P α P p O

\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_{O} \)

Dựa vào hình vẽ ta có (định lí Pi-ta-go)

 \(P_{O}^2 = P_{\alpha}^2+P_p^2\)

=> \(2m_{O}K_{O} = 2m_{He}K_{He}+ 2m_pK_p.(2)\)

Từ (1) và (2) giải hệ phương trình ta được

\(K_p = 4,414MeV; K_O = 2,075 MeV.\)

 

 

 

22 tháng 12 2018

Đáp án C

Phương pháp:

Sử dụng định luật bảo toàn số khối và bảo toàn điện tích để viết phương trình phản ứng.

Sử dụng định luật bảo toàn động lượng trong phản ứng hạt nhân.

Công thức liên hê ̣giữa động lượng và động năng: p 2 = 2mK

Công thức tính năng lượng toả ra của phản ứng: ∆E = (mt – ms)c2 = Ks - Kt

(Kt, Ks lần lượt là tổng động năng của các hạt trước vàsau phản ứng)

Cáchgiải

+ PT phản ứng: 

 

  

+ Theo định luật bảo toàn động lượng ta có: 

    

 

ta biểu diễn bằng hình vẽ sau

 

Từ hình vẽ ta có:   

 

 

 

 

Năng lượng tỏa ra của phản ứng :

 

 

 

 

 

8 tháng 4 2016

\(_2^4 He + _{13}^{27}Al \rightarrow _{15}^{30}P + _0^1n\)

Phản ứng thu năng lượng 

\( K_{He} - (K_{P}+K_{n} )= 2,7MeV.(*)\)

Lại có  \(\overrightarrow v_P = \overrightarrow v_n .(1)\)

=> \(v_P = v_n\)

=> \(\frac{K_P}{K_n} = 30 .(2)\)

Áp dụng định luật bảo toàn động lượng trước và sau phản ứng

\(\overrightarrow P_{He} = \overrightarrow P_{P} + \overrightarrow P_{n} \)

Do \(\overrightarrow P_{P} \uparrow \uparrow \overrightarrow P_{n}\) 

=> \(P_{He} = P_{P} + P_{n} \)

=> \(m_{He}.v_{He} = (m_{P}+ m_n)v_P=31m_nv\) (do \(v_P = v_n = v\))

=> \(K_{He} = \frac{31^2}{4}K_n.(3)\)

Thay (2) và (3) vào (*) ta có

 \(K_{He}-31K_n= 2,7.\)

=> \(K_{He} = \frac{2,7}{1-4/31} = 3,1MeV.\)

 

 

 

1 tháng 4 2017

Khe=31^2/4Kn lam sao ra dc nhu the a

6 tháng 4 2016

\(_1^1p + _4^9Be \rightarrow _2^4He+ _3^6 Li\)

Áp dụng định luật bảo toàn động lượng

PPαPLip

\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)

Dựa vào hình vẽ ta có (định lí Pi-ta-go)

 \(P_{Li}^2 = P_{\alpha}^2+P_p^2\)

=> \(2m_{Li}K_{Li} = 2m_{He}K_{He}+ 2m_pK_p\)

=> \(K_{Li} = \frac{4K_{He}+K_p}{6}=3,58MeV\)

=> \(v = \sqrt{\frac{2.K_{Li}}{m_{Li}}} = \sqrt{\frac{2.3,58.10^6.1,6.10^{-19}}{6.1,66055.10^{-27}}} = 10,7.10^6 m/s.\)