\(\dfrac{x-2000}{22}+\dfrac{x-2005}{17}+\dfrac{x}{674}=5\)

Mn giúp mình với ạ. Cả...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2023

Có gì sai sai đấy ạ, cho xin hỏi là có chép sai đề ko ạ?

4 tháng 12 2023

\(\dfrac{x-2000}{22}\) +  \(\dfrac{x-2005}{17}\) + \(\dfrac{x}{674}\) = 5

\(\dfrac{x-2000}{22}\) + \(\dfrac{x-2005}{17}\) + \(\dfrac{x}{674}\) - 5 = 0

(\(\dfrac{x-2000}{22}\)  - 1) + (\(\dfrac{x-2005}{17}\) - 1) + (\(\dfrac{x}{674}\) - 3) = 0

\(\dfrac{x-2022}{22}\) + \(\dfrac{x-2022}{17}\) + \(\dfrac{x-2022}{674}\)  = 0

(\(x\) - 2022).(\(\dfrac{1}{22}\) + \(\dfrac{1}{17}\) + \(\dfrac{1}{647}\)) = 0 

Vì \(\dfrac{1}{22}\) + \(\dfrac{1}{17}\) + \(\dfrac{1}{647}\) > 0

Nên  \(x\) - 2022 = 0

         \(x\)            = 2022

Vậy \(x\)            = 2022

\(\Leftrightarrow3^x\cdot9+4\cdot3^x\cdot3+3^x\cdot\dfrac{1}{3}=6^6\)

\(\Leftrightarrow3^x=6^6:\left(9+4\cdot3+\dfrac{1}{3}\right)=2187\)

hay x=7

c: \(\Leftrightarrow2^{x-1}=24-16+3-3=8\)

=>x-1=3

hay x=4

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{-3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{-2x+7y-3z}{6+28-15}=\dfrac{171}{19}=9\)

Do đó: x=-27; y=36; z=45

1 tháng 1 2018

a/

Theo đề,ta có:

+/ \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\)

+/\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)\(\left(2\right)\)

Từ (1) và (2), ta có:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{28}{-19}\)

Do đó:

+/ \(\dfrac{x}{8}=\dfrac{28}{-19}\Rightarrow x=-\dfrac{224}{19}\)

+/\(\dfrac{y}{12}=\dfrac{28}{-19}\Rightarrow y=-\dfrac{336}{19}\)

+/\(\dfrac{z}{15}=\dfrac{28}{-19}\Rightarrow z=-\dfrac{420}{19}\)

Vậy: + \(x=-\dfrac{224}{19}\)

+ \(y=-\dfrac{336}{19}\)

+ \(z=-\dfrac{420}{19}\)

1 tháng 1 2018

a,x2=y3,y4=z5x2=y3,y4=z5và x-y-z=28

\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\)

\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)

=>\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng tính chất DTSBN có:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)=\(\dfrac{x-y-z}{8-12-15}=\dfrac{-28}{19}\)

=> x=\(\dfrac{-224}{19}\)

y=\(\dfrac{-336}{19}\)

z=\(\dfrac{-420}{19}\)

18 tháng 9 2017

a. \(\dfrac{-18}{91}\)\(\dfrac{-23}{114}\) ( mẫu chung : 10374 )

Quy đồng : \(\dfrac{-18}{91}=\dfrac{-2052}{10374}\) ; \(\dfrac{-23}{114}=\dfrac{-2093}{10374}\)

\(\dfrac{-2052}{10374}>\dfrac{-2093}{10374}\Rightarrow\dfrac{-18}{91}>\dfrac{-23}{114}\)

Vậy...

b. \(\dfrac{-22}{35}\)\(\dfrac{-103}{177}\) ( MC = 6195 )

Quy đồng : \(\dfrac{-22}{35}=\dfrac{-3894}{6195};\dfrac{-103}{177}=\dfrac{-3605}{6195}\)

\(\dfrac{-3894}{6195}< \dfrac{-3605}{6195}\Rightarrow\dfrac{-22}{35}< \dfrac{-103}{177}\)

Vậy...

c. \(\dfrac{-22}{45}\)\(\dfrac{-17}{33}\)(MC=495)

Quy đồng : \(\dfrac{-22}{45}=\dfrac{-242}{495};\dfrac{-17}{33}=\dfrac{-255}{495}\)

\(\dfrac{-242}{495}>\dfrac{-255}{495}\Rightarrow\dfrac{-22}{45}>\dfrac{-17}{33}\)

Vậy

1 tháng 6 2018

Ta có 3 biểu thức giá trị tuyệt đối trên luôn > hoặc = 0 ( ghi vậy cho nhanh nhé)

Mà 3 biểu thức đó cộng lại =0 nên x+17/3=y-2000/1999=z-2005=0

hay x=-17/3 y=2000/1999 z=2005

=> x+z=-17/3+2005= Bạn tự tính nhé mình ko cầm máy tính

17 tháng 6 2018

a, \(\left|3x-4\right|+\left|3y+5\right|=0\)

Ta có :

\(\left|3x-4\right|\ge0\forall x;\left|3y+5\right|\ge0\forall x\\ \)

\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\forall x\\ \Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\\ Vậy.........\)

b, \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)

Ta có :

\(\left|x+\dfrac{19}{5}\right|\ge0\forall x;\left|y+\dfrac{1890}{1975}\right|\ge0\forall y;\left|z-2004\right|\ge0\forall z \)

\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{1890}{1975}\\z=2004\end{matrix}\right.\\ Vậy............\)

c, \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)

Ta có : \(\left|x+\dfrac{9}{2}\right|\ge0\forall x;\left|y+\dfrac{4}{3}\right|\ge0\forall y;\left|z+\dfrac{7}{2}\right|\ge0\forall z\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\\ Vậy............\)

d, \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)

Ta có :

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x;\left|y-\dfrac{1}{5}\right|\ge0\forall y;\left|x+y+z\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\z=0-\dfrac{1}{5}+\dfrac{3}{4}=\dfrac{11}{20}\end{matrix}\right.\\ Vậy.......\)

e, Câu cuối bn làm tương tự như câu a, b, c nhé!

17 tháng 6 2018

bạn ơi cho mình hỏi là chứ A viết ngược kia là gì vậy ạ?

28 tháng 7 2017

a) Theo bài ra ta có : \(x+y+z=49\)

\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}\\ =\dfrac{12x+12y+12z}{18+16+15}\\ =\dfrac{12\left(x+y+z\right)}{49}\\ =\dfrac{12\cdot49}{49}\\ =12\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{12x}{18}=12\Rightarrow12x=216\Rightarrow x=18\\\dfrac{12y}{16}=12\Rightarrow12y=192\Rightarrow y=16\\\dfrac{12z}{15}=12\Rightarrow12z=180\Rightarrow z=15\end{matrix}\right.\)

\(\text{Vậy }x=18\\ y=16\\ z=15\)

28 tháng 7 2017

b) Theo bài ra ta có : \(2x+3y-z=50\)

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\\ \Rightarrow\dfrac{2\left(x-1\right)}{4}=\dfrac{3\left(y-2\right)}{9}=\dfrac{z-3}{4}\\ \Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\dfrac{2x-2}{4}=\dfrac{3y-2}{9}=\dfrac{z-3}{4}=\\ \dfrac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\\ =\dfrac{2x-2+3y-6-z+3}{9}\\ =\dfrac{\left(2x+3y-z\right)-\left(2+6-3\right)}{9}\\ =\dfrac{50-5}{9}\\ =\dfrac{45}{9}\\ =5\\ \)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2x-2}{4}=5\Rightarrow2x-2=20\Rightarrow2x=22\Rightarrow x=11\\\dfrac{3y-6}{9}=5\Rightarrow3y-6=45\Rightarrow3y=51\Rightarrow y=17\\\dfrac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\end{matrix}\right.\)

\(\text{Vậy }x=11\\ y=17\\ z=23\)

17 tháng 6 2018

a, \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\\ 3B=3+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2003}}+\dfrac{1}{3^{2004}}\\ 3B-B=\left(3+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2003}}+\dfrac{1}{3^{2004}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\right)\\2B=3-\dfrac{1}{3^{2005}}\\ B=\dfrac{3-\dfrac{1}{3^{2005}}}{2}\)

b,

\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\\ 5A=5+5^2+5^3+5^4+...+5^{50}+5^{51}\\ 5A-A=\left(5+5^2+5^3+5^4+...+5^{50}+5^{51}\right)-\left(1+5+5^2+5^3+...+5^{49}+5^{50}\right)\\ 4A=5^{51}-1\\ A=\dfrac{5^{51}-1}{4}\)

c,

\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2-1}\right)......\left(\dfrac{1}{100^2-1}\right)\\ A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)......\left(\dfrac{1}{10000}-1\right)\\ A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\cdot\cdot\cdot\dfrac{9999}{10000}\\ A=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot\cdot\cdot\cdot\dfrac{99\cdot101}{100\cdot100}\\ A=\dfrac{1\cdot2\cdot3\cdot\cdot\cdot\cdot99}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\cdot\dfrac{3\cdot4\cdot5\cdot\cdot\cdot\cdot101}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\\ A=\dfrac{1}{100}\cdot\dfrac{101}{2}\\ A=\dfrac{101}{200}\)

17 tháng 6 2018

d,

\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\\ A=\left(2^{100}+2^{98}+...+2^2\right)-\left(2^{99}+2^{97}+...+2^1\right)\)

Đặt \(A=B-C\)

\(\Rightarrow B=\left(2^{100}+2^{98}+...+2^2\right)vàC=\left(2^{99}+2^{97}+...+2^1\right)\)

\(B=2^{100}+2^{98}+...+2^2\\ 4B=2^{102}+2^{100}+...+2^4\\ 4B-B=\left(2^{102}+2^{100}+...+2^4\right)-\left(2^{100}+2^{98}+...+2^2\right)\\ 3B=2^{102}-2^2\\ B=\dfrac{2^{102}-2^2}{3}\left(1\right)\)

\(C=2^{99}+2^{97}+...+2^1\\ 4C=2^{101}+2^{99}+...+2^3\\ 4C-C=\left(2^{101}+2^{99}+...+2^3\right)-\left(2^{99}+2^{97}+...+2\right)\\ 3C=2^{101}-2\\ C=\dfrac{2^{101}-2}{3}\left(2\right)\)

Từ (1) và (2) ta có :

\(A=\dfrac{2^{102}-2^2}{3}-\dfrac{2^{101}-2}{3}\\ A=\dfrac{2^{102}-2^2-2^{101}+2}{3}\\ A=\dfrac{2^{102}-2^{101}+2}{3}\)

3 tháng 10 2018

\(B=\dfrac{\dfrac{2}{10}-\dfrac{3}{8}+\dfrac{5}{11}}{\dfrac{-3}{10}+\dfrac{9}{16}-\dfrac{15}{22}}\)\(-\dfrac{1}{3}\)

\(B=\dfrac{\dfrac{2}{10}-\dfrac{6}{16}+\dfrac{10}{22}}{\dfrac{-3}{10}+\dfrac{9}{16}-\dfrac{15}{22}}\)\(-\dfrac{1}{3}\)

\(B=\dfrac{2.\left(\dfrac{1}{10}-\dfrac{3}{16}+\dfrac{5}{22}\right)}{-3.\left(\dfrac{1}{10}-\dfrac{3}{16}+\dfrac{5}{22}\right)}\)\(-\dfrac{1}{3}\)

\(B=\dfrac{-2}{3}-\dfrac{1}{3}=-1\)

6)a) \(\left|\dfrac{5}{3}:x\right|=\left|\dfrac{-1}{6}\right|\)

\(\left|\dfrac{5}{3}:x\right|=\dfrac{1}{6}\)

\(\dfrac{5}{3}:x=\dfrac{1}{6}\) hoặc \(\dfrac{5}{3}:x=\dfrac{-1}{6}\)

*TH1 : \(\dfrac{5}{3}:x=\dfrac{1}{6}\)

\(x=\dfrac{5}{3}:\dfrac{1}{6}=10\)

*TH2 : \(\dfrac{5}{3}:x=\dfrac{-1}{6}\)

\(x=\dfrac{5}{3}:\dfrac{-1}{6}=-10\)

Vậy \(x\)\(\left\{10;-10\right\}\)

\(b,\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|-\dfrac{3}{4}=\left|\dfrac{-3}{4}\right|\)

\(\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|-\dfrac{3}{4}=\dfrac{3}{4}\)

\(\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|=\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{3}{2}\)

\(\dfrac{3}{4}x-\dfrac{3}{4}=\dfrac{3}{2}\) hoặc \(\dfrac{3}{4}x-\dfrac{3}{4}=\dfrac{-3}{2}\)

TH1 : \(\dfrac{3}{4}x-\dfrac{3}{4}=\dfrac{3}{2}\)

\(\dfrac{3}{4}x=\dfrac{3}{2}+\dfrac{3}{4}=\dfrac{9}{4}\)

\(x=\dfrac{9}{4}:\dfrac{3}{4}=3\)

TH2 : \(\dfrac{3}{4}x-\dfrac{3}{4}=\dfrac{-3}{2}\)

\(\dfrac{3}{4}x=\dfrac{-3}{2}+\dfrac{3}{4}=\dfrac{-3}{4}\)

\(x=\dfrac{-3}{4}:\dfrac{3}{4}=-1\)

Vậy \(x\)\(\left\{3;1\right\}\)

15 tháng 2 2019

a) |x - 1,7| = 2,3

Xét 2 trường hợp:

TH1: x - 1,7 = -2,3

         x         = -2,3 +1,7

         x         = -0,6

TH2: x - 1,7 = 2,3

         x         = 2,3 + 1,7

         x         = 4

Vậy: Tự kl :<

15 tháng 2 2019

c)

+)x<1=>/x-1/=1-x=2x-3=>1-x-(2x-3)=0=>4-3x=0=>x=4/3 (loại)

+)x>=1=>x-1=2x-3=>2x-x-3+1=0=>x-2=0=>x=2(t/m)

Vậy: x=2 haizz