K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2022

\(\dfrac{\sqrt{6^5}}{\sqrt{2^3\cdot3^5}}=\dfrac{\sqrt{7776}}{\sqrt{8\cdot243}}=\dfrac{\sqrt{7776}}{\sqrt{1944}}=\dfrac{36\sqrt{6}}{18\sqrt{6}}=\dfrac{36}{18}=2\)

 

b: \(=\sqrt{5}-1-\sqrt{5}-1=-2\)

c: \(=\dfrac{\left(2\sqrt{2}+\sqrt{3}-2\sqrt{2}+\sqrt{3}\right)}{2\sqrt{3}}=1\)

d: \(=\dfrac{\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}=-\sqrt{2}\)

11 tháng 8 2018

M = \(\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\times\sqrt{2}+\sqrt{20}\)

= \(2-\sqrt{6-2\sqrt{5}}+\sqrt{20}\)

= \(2-\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{20}\)

= 2 \(-\sqrt{5}+1+\sqrt{20}\)

= 3 + \(\sqrt{5}\)

3 tháng 8 2018

\(M=\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\sqrt{2}+\sqrt{20}=2-\sqrt{5-2\sqrt{5}+1}+\sqrt{20}=2-\sqrt{5}-1+2\sqrt{5}=1+\sqrt{5}\) \(N=\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(5-2\right)=-3\)

1: \(=\sqrt{6}+\sqrt{6}+1=2\sqrt{6}+1\)

2: \(=\dfrac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\dfrac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=6+3=9\)

3: \(=\sqrt{3}+1-\sqrt{3}=1\)

 

5 tháng 8 2018

a) \(\dfrac{\sqrt{2}}{\sqrt{3}}+2.\dfrac{\sqrt{3}}{\sqrt{2}}-\sqrt{6}=\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{\sqrt{2}.\sqrt{2}.\sqrt{3}}{\sqrt{2}}-\sqrt{6}=\dfrac{\sqrt{2}}{\sqrt{3}}+\sqrt{6}-\sqrt{6}=\dfrac{\sqrt{2}}{\sqrt{3}}\)

b)

\(3\dfrac{\sqrt{2}}{\sqrt{5}}+\dfrac{\sqrt{5}}{\sqrt{2}}-2\sqrt{10}=3\dfrac{\sqrt{2}.\sqrt{5}}{5}+\dfrac{\sqrt{5}.\sqrt{2}}{2}-2\sqrt{10}\)\(=\sqrt{10}.\left[\dfrac{3}{5}+\dfrac{1}{2}-2\right]=\sqrt{10}.\left(-\dfrac{9}{10}\right)=\dfrac{-9\sqrt{10}}{10}\)

c)

\(\dfrac{-\sqrt{3}}{\sqrt{5}}+3.\dfrac{\sqrt{5}}{\sqrt{3}}-4\sqrt{15}=\dfrac{-\sqrt{15}}{5}+3.\dfrac{\sqrt{15}}{3}-4\sqrt{15}=\sqrt{15}.\left(\dfrac{-1}{5}+1-4\right)=\sqrt{15}.\left(-\dfrac{16}{5}\right)=\dfrac{-16\sqrt{15}}{5}\)

d)\(\dfrac{2\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}+\dfrac{2\left(\sqrt{6}-2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}+\dfrac{5\sqrt{6}}{6}\)

\(=\dfrac{2\left[\left(\sqrt{6}+2\right)+\left(\sqrt{6}-2\right)\right]}{6-4}+\dfrac{5\sqrt{6}}{6}=\left(2\sqrt{6}\right)+\dfrac{5\sqrt{6}}{6}=\dfrac{17\sqrt{6}}{6}\)

Kiểm tra lại nhé ^^

a: \(=\dfrac{2\sqrt{7}-10-6+2\sqrt{7}}{4}+4+2\sqrt{7}-\dfrac{20}{9}+\dfrac{5}{9}\sqrt{7}\)

\(=\sqrt{7}-4+\dfrac{23}{9}\sqrt{7}+\dfrac{16}{9}\)

\(=\dfrac{32}{9}\sqrt{7}-\dfrac{20}{9}\)

b:\(=\dfrac{2\sqrt{6}+4+2\sqrt{6}-4}{2}+\dfrac{5}{6}\sqrt{6}\)

\(=2\sqrt{6}+\dfrac{5}{6}\sqrt{6}=\dfrac{17}{6}\sqrt{6}\)

c: \(=\dfrac{1}{3}\sqrt{3}+\dfrac{1}{6}\sqrt{2}+\dfrac{1}{\sqrt{3}}\cdot\sqrt{\dfrac{5-2\sqrt{6}}{12}}\)

\(=\dfrac{1}{3}\sqrt{3}+\dfrac{1}{6}\sqrt{2}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)

\(=\dfrac{2\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}}{6}=\dfrac{3\sqrt{3}}{6}=\dfrac{\sqrt{3}}{2}\)

 

a: \(=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)

b: \(=\left(-\sqrt{5}-2+\sqrt{5}-\sqrt{3}\right)\cdot\left(2\sqrt{3}+3\right)\)

\(=-\sqrt{3}\left(2+\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)

\(=-\sqrt{3}\left(7+4\sqrt{3}\right)=-7\sqrt{3}-12\)

c: \(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}=\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1\)

2 tháng 9 2017

1/

\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)

\(=\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}-\dfrac{4-3}{2-\sqrt{3}}\)

\(=\sqrt{3}+2+\sqrt{2}-\dfrac{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{2-\sqrt{3}}\)

\(=\sqrt{3}+2+\sqrt{2}-2-\sqrt{3}\)

\(=\sqrt{2}\)

2/

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\dfrac{\left(\sqrt{5}\right)^2}{\sqrt{5}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-\left(\dfrac{\left(\sqrt{5}\right)^2}{\sqrt{5}}-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-\left(\sqrt{5}+\sqrt{2}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-\left(5-2\right)=-3\)

#F.C

3 tháng 9 2017

máy câu còn lại thì sao

15 tháng 6 2018

Giải:

\(\left(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}\right).\left(3\sqrt{\dfrac{2}{3}}-\sqrt{2}-\sqrt{6}\right).\left(-\sqrt{6}\right)\)

\(=\left(\sqrt{\dfrac{27}{2}}+\sqrt{\dfrac{8}{3}}-\sqrt{24}\right).\left(\sqrt{6}-\sqrt{2}-\sqrt{6}\right).\left(-\sqrt{6}\right)\)

\(=\left(\dfrac{\sqrt{6}}{6}\right).\left(-\sqrt{2}\right).\left(-\sqrt{6}\right)\)

\(=\sqrt{2}\)

Vậy ...

16 tháng 7 2017

\(\dfrac{2}{1-\sqrt{2}}-\dfrac{2}{1+\sqrt{2}}\)

\(=\dfrac{2\left(1+\sqrt{2}\right)-2\left(1-\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}\)

\(=\dfrac{2+2\sqrt{2}-2+2\sqrt{2}}{1-2}=-4\sqrt{2}\)

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{2}\right)\)

\(=\left[-\dfrac{\sqrt{2}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}-\sqrt{5}\right]\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-3\)

\(\dfrac{2}{7+4\sqrt{3}}+\dfrac{2}{7-4\sqrt{3}}\)

\(=\dfrac{2\left(7-4\sqrt{3}\right)+2\left(7+4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)

\(=\dfrac{14-8\sqrt{3}+14+8\sqrt{3}}{49-48}\)

= 28

16 tháng 7 2017

\(\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{2}{3-\sqrt{5}}}\)

\(=\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{4}{6-2\sqrt{5}}}\)

\(=\dfrac{2}{\sqrt{5}+1}-\dfrac{2}{\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\dfrac{2\left(\sqrt{5}-1\right)-2\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)

\(=\dfrac{2\sqrt{5}-2-2\sqrt{5}-2}{5-1}\)

= - 1

\(\dfrac{4}{1-\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\)

\(=\dfrac{4\left(1+\sqrt{3}\right)}{1-3}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)}\)

\(=-2-2\sqrt{3}-\sqrt{3}=-2-3\sqrt{3}\)

\(\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)

\(=\dfrac{2}{4+\sqrt{6+2\sqrt{5}}}\) (nhân [căn 2] vào cả tử và mẫu)

\(=\dfrac{2}{4+\sqrt{\left(\sqrt{5}+1\right)^2}}\)

\(=\dfrac{2}{5+\sqrt{5}}=\dfrac{2\left(5-\sqrt{5}\right)}{25-5}=\dfrac{5-\sqrt{5}}{10}\)

6 tháng 9 2018

a. \(2\sqrt{16}+\sqrt{2}.\sqrt{0,02}-\dfrac{\sqrt{12,1}}{\sqrt{0,1}}=2.4+\sqrt{0,04}-\sqrt{\dfrac{12,1}{0,1}}=8+0,2-11=-2,8\)b. \(5\sqrt{20}-4\sqrt{45}+\dfrac{15}{\sqrt{5}}=10\sqrt{5}-12\sqrt{5}+3\sqrt{5}=\sqrt{5}\)

c. \(\left(\dfrac{\sqrt{6}-\sqrt{3}}{5\sqrt{2}-5}+\dfrac{\sqrt{5}}{5}\right):\dfrac{2}{\sqrt{5}-\sqrt{3}}=\left(\dfrac{\sqrt{3}\left(\sqrt{2}-1\right)}{5\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{5}}{5}\right).\dfrac{\sqrt{5}-\sqrt{3}}{2}=\dfrac{\sqrt{3}+\sqrt{5}}{5}.\dfrac{\sqrt{5}-\sqrt{3}}{2}=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5.2}=\dfrac{5-3}{10}=\dfrac{2}{10}=\dfrac{1}{5}\)d. \(\dfrac{\sqrt{6}-3}{\sqrt{3}-\sqrt{2}}-\dfrac{4}{\sqrt{3}+1}+3\sqrt{3}=\dfrac{-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\dfrac{4}{\sqrt{3}+1}+3\sqrt{3}=3\sqrt{3}-\sqrt{3}-\dfrac{4}{\sqrt{3}+1}=\dfrac{\left(\sqrt{3}+1\right).2\sqrt{3}-4}{\sqrt{3}+1}=\dfrac{6+2\sqrt{3}-4}{\sqrt{3}+1}=\dfrac{2+2\sqrt{3}}{\sqrt{3}+1}=\dfrac{ 2\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=2\)