Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)
b: \(=\left(-\sqrt{5}-2+\sqrt{5}-\sqrt{3}\right)\cdot\left(2\sqrt{3}+3\right)\)
\(=-\sqrt{3}\left(2+\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)
\(=-\sqrt{3}\left(7+4\sqrt{3}\right)=-7\sqrt{3}-12\)
c: \(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}=\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1\)
\(A=\sqrt{8}-\sqrt{7}+5\sqrt{7}+2\sqrt{2}\\ =2\sqrt{2}-\sqrt{7}+5\sqrt{7}+2\sqrt{2}\\ =4\sqrt{2}+4\sqrt{7}\)
\(B=\left(3+2\sqrt{6}+2\right)\left(25-20\sqrt{6}+24\right)\sqrt{3-2\sqrt{6}+2}\\ =\left(\sqrt{3}+\sqrt{2}\right)^2\left(5-2\sqrt{6}\right)^2\left(\sqrt{3}-\sqrt{2}\right)\\ =\left(\sqrt{3}+\sqrt{2}\right)\left(3-2\sqrt{6}+2\right)^2\\ =\left(\sqrt{3}-\sqrt{2}\right)^3\\ =9\sqrt{3}-11\sqrt{2}\)
a: \(=\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)^2\cdot\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\left(5-2\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)\)
\(=5\sqrt{3}-5\sqrt{2}-6\sqrt{2}+4\sqrt{3}=9\sqrt{3}-11\sqrt{2}\)
b: \(=\dfrac{\sqrt{2}}{2+\sqrt{3}+1}+\dfrac{\sqrt{2}}{2-\sqrt{3}+1}\)
\(=\dfrac{\sqrt{2}}{3+\sqrt{3}}+\dfrac{\sqrt{2}}{3-\sqrt{3}}\)
\(=\dfrac{3\sqrt{2}-\sqrt{6}+3\sqrt{2}+\sqrt{6}}{9-3}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)
d: \(=2\sqrt{2}-\sqrt{6}-3\sqrt{2}+\sqrt{6}=-\sqrt{2}\)
1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)
2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)
3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2}
\)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)
4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)
5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)
6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)
7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)
8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2
1/
\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
\(=\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}-\dfrac{4-3}{2-\sqrt{3}}\)
\(=\sqrt{3}+2+\sqrt{2}-\dfrac{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{2-\sqrt{3}}\)
\(=\sqrt{3}+2+\sqrt{2}-2-\sqrt{3}\)
\(=\sqrt{2}\)
2/
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)
\(=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\dfrac{\left(\sqrt{5}\right)^2}{\sqrt{5}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)
\(=-\left(\dfrac{\left(\sqrt{5}\right)^2}{\sqrt{5}}-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)
\(=-\left(\sqrt{5}+\sqrt{2}\right).\left(\sqrt{5}-\sqrt{2}\right)\)
\(=-\left(5-2\right)=-3\)
#F.C
a) \(\dfrac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
\(=\dfrac{\left(245-100\sqrt{6}+98\sqrt{6}-240\right)\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}}{9\sqrt{3}-11\sqrt{2}}\)
\(=\dfrac{\left(5-2\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)}{9\sqrt{3}-11\sqrt{2}}\)
\(=\dfrac{5\sqrt{3}-5\sqrt{2}-2\sqrt{18}+2\sqrt{12}}{9\sqrt{3}-11\sqrt{2}}\)
\(=\dfrac{5\sqrt{3}-5\sqrt{2}-6\sqrt{2}+4\sqrt{3}}{9\sqrt{3}-11\sqrt{2}}\)
\(=\dfrac{9\sqrt{3}-11\sqrt{2}}{9\sqrt{3}-11\sqrt{2}}\)
\(=1\)
b)
\(\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2}{\sqrt{6}}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2\sqrt{6}}{6}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{\sqrt{6}}{3}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{3\sqrt{3\left(2+\sqrt{3}\right)}-2\sqrt{18}+3\sqrt{2+\sqrt{3}}}{6\sqrt{3}}}\)
\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{3\sqrt{6+3\sqrt{3}-6\sqrt{2}+3\sqrt{2+\sqrt{3}}}}{6\sqrt{3}}}\)
\(=\dfrac{3\sqrt{\left(2+\sqrt{3}\right)\cdot3}}{3\sqrt{6+3\sqrt{3}}-6\sqrt{2}+3\sqrt{2+\sqrt{3}}}\)
\(=\dfrac{3\sqrt{\left(2+\sqrt{3}\right)\cdot3}}{3\left(\sqrt{6+3\sqrt{3}}-2\sqrt{2}+\sqrt{2+\sqrt{3}}\right)}\)
\(=\dfrac{\sqrt{\left(2+\sqrt{3}\right)\cdot3}}{\sqrt{6+3\sqrt{3}}-2\sqrt{2}+\sqrt{2+\sqrt{3}}}\)
\(=\dfrac{\sqrt{6+3\sqrt{3}}}{\sqrt{6+3\sqrt{3}}-2\sqrt{2}+\sqrt{2+\sqrt{3}}}\)
\(=\dfrac{\sqrt{\left(6+3\sqrt{3}\right)\left(-\sqrt{3}+2+\sqrt{3}\right)}}{-2\sqrt{3}}\)
\(=\dfrac{\sqrt{\left(6+3\sqrt{3}\right)\cdot2}}{-2\sqrt{3}}\)
\(=\dfrac{\sqrt{12+6\sqrt{3}}}{-2\sqrt{3}}\)
\(=\dfrac{\sqrt{\left(3+\sqrt{3}\right)^2}}{-2\sqrt{3}}\)
\(=\dfrac{3+\sqrt{3}}{-2\sqrt{3}}\)
\(=-\dfrac{\left(3+\sqrt{3}\right)\sqrt{3}}{6}\)
\(=-\dfrac{3\sqrt{3}+3}{6}\)
\(=-\dfrac{3\left(\sqrt{3}+3\right)}{6}\)
\(=-\dfrac{\sqrt{3}+1}{2}\)
a) bấm mày
b) qui đồng trong ngặc trước rồi thu gọn
c) trong ngặc : khử phân số thứ nhất \(\Rightarrow\) qui đồng \(\Rightarrow\) giải bình thường
M = \(\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\times\sqrt{2}+\sqrt{20}\)
= \(2-\sqrt{6-2\sqrt{5}}+\sqrt{20}\)
= \(2-\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{20}\)
= 2 \(-\sqrt{5}+1+\sqrt{20}\)
= 3 + \(\sqrt{5}\)
\(M=\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\sqrt{2}+\sqrt{20}=2-\sqrt{5-2\sqrt{5}+1}+\sqrt{20}=2-\sqrt{5}-1+2\sqrt{5}=1+\sqrt{5}\) \(N=\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(5-2\right)=-3\)