Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 1+2y / 18 = 1+4y / 24 = 1+6y / 6x
Ta có : 1+2y / 18 = 1+6y / 6x = 1+2y + 1+6y / 18 + 6y
= 2+ 8y / 18+6y = 2 (1+4y) / 2( 9 +3y) = 1+4y/9+3y
Ta lại có : 1 + 4y/24 = 1+4y / 9+3y
=> 24=9+3y => 15=3y => y=5
Vậy y=5
Nhớ like
b, 1+3y/12 = 1+5y/5x = 1+7y/4x
Ta có : 1+3y/12 = 1+7y/4x = 1+3y+1+7y / 12 +4x
= 2 + 10y / 12 +4x = 2 (1+5y) / 2 (6+2x) = 1+5y / 6+2x
Ta lại có: 1+5y / 5x = 1+5y / 6+2x
=> 5x = 6+2x => 3x = 6 => x=2
Vậy x =2
dễ mà k trả lời cũng như không dập tắt niềm tin của ng khác, thấy ghét, hứ
\(\dfrac{1+3y}{12}=\dfrac{1+7y}{4x}=\dfrac{2+10y}{12+4x}\\ =\dfrac{1+5y}{6+2x}\\ \Rightarrow2x+6=5x\\ \Rightarrow3x=6\\ \Leftrightarrow x=2\\ \Rightarrow y=..\)
Ta có:
\(\dfrac{1+3y}{12}=\dfrac{1+7y}{4x}=\dfrac{1+1+3y+7y}{12+4x}\)
\(=\dfrac{2+10y}{2.\left(6+2x\right)}=\dfrac{2.\left(1+5y\right)}{2.\left(6+2x\right)}=\dfrac{1+5y}{6+2x}=\dfrac{1+5y}{5x}\)
- Xét \(1+5y=0\Rightarrow y=\dfrac{-1}{5}\Rightarrow1+5y=0\) ( loại )
- Xét \(1+5y\ne0\Rightarrow6+2x=5x\)
\(\Rightarrow5x-2x=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Mà \(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}\)
\(\Rightarrow\dfrac{1+3y}{12}=\dfrac{1+5y}{10}\)
\(\Rightarrow10.\left(1+3y\right)=12.\left(1+5y\right)\)
\(\Rightarrow10+30y=12+60y\)
\(\Rightarrow10-12=60y-30y\)
\(\Rightarrow-2=30y\)
\(\Rightarrow y=\dfrac{-1}{5}\)
Vậy \(x=2\) , \(y=\dfrac{-1}{5}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}=\dfrac{1+7y-1-5y}{4x-5x}=\dfrac{2y}{-x}=\dfrac{1+5y-1-3y}{5x-12}=\dfrac{2y}{5x-12}\)
=>\(\dfrac{2y}{-x}=\dfrac{2y}{5x-12}\) với y=0 thay vào không thỏa mãn
nếu y khác 0
=>-x=5x-12
=>x=2. Thay x=2 vào trên ta được
\(\dfrac{1+3y}{12}=\dfrac{2y}{-2}=-y=>1+3y=-12y=>1=-15y=\dfrac{-1}{15}\)
Vậy x=2,y=\(\dfrac{-1}{15}\) thỏa mãn đề bài
Tự hỏi tự trả lời giống tự kỉ lắm, lần sau đừng như vậy nữa. NHẮC.
Từ \(\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\Rightarrow\dfrac{4+20y}{20x}=\dfrac{5+35y}{20x}\)
\(\Rightarrow4+20y=5+35y\)
\(4-5=35y-20y\)
\(\Rightarrow15y=-1\)
\(\Rightarrow y=\dfrac{-1}{15}\)
Thay \(y=\dfrac{-1}{15}\) vào biểu thức ban đầu, ta được :
\(\dfrac{1+3\dfrac{-1}{15}}{12}=\dfrac{1+5\dfrac{-1}{15}}{5x}\)
\(\dfrac{\dfrac{4}{5}}{12}=\dfrac{\dfrac{2}{3}}{5x}\)
\(\Rightarrow12\dfrac{2}{3}=x\dfrac{4}{5}\)
\(x=12\dfrac{2}{3}:\dfrac{4}{5}=\dfrac{38}{3}\cdot\dfrac{5}{4}=\dfrac{95}{6}\)
Vậy ...
\(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{5+15y}{60}=\dfrac{3+15y}{15x}=\dfrac{2}{60-15x}\)
\(\dfrac{1+3y}{12}=\dfrac{1+7y}{4x}=\dfrac{7+21y}{84}=\dfrac{3+21y}{12x}=\dfrac{4}{84-12x}\)
\(\Rightarrow\dfrac{2}{60-15x}=\dfrac{4}{84-12x}\Leftrightarrow168-24x=240-60x\)
\(\Leftrightarrow36x=72\Rightarrow x=2\)
\(\Rightarrow\dfrac{1+3y}{12}=\dfrac{2}{60-15.2}=\dfrac{2}{30}=\dfrac{1}{15}\)
\(\Leftrightarrow15+45y=12\Rightarrow45y=-3\Rightarrow y=\dfrac{-1}{15}\)
Vậy \(\left(x;y\right)=\left(2;\dfrac{-1}{15}\right)\)
\(\dfrac{1+3y}{12}==\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
\(\Rightarrow\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}=\dfrac{1+5y-1+7x}{\left(5x-4x\right)}=\dfrac{-2y}{x}\)
\(\Rightarrow\dfrac{\left(1+5y\right)}{5}=-2y\)
Giải ra ta có: \(y=\dfrac{-1}{15}\)
\(\Leftrightarrow x=2\)
\(\dfrac{1+5y}{5x}=\dfrac{1+4y}{4x}\) (\(x\ne\) 0)
\(\dfrac{1}{5x}\) + \(\dfrac{y}{x}\) = \(\dfrac{1}{4x}\) + \(\dfrac{y}{x}\)
\(\dfrac{1}{5x}\) = \(\dfrac{1}{4x}\)
\(\dfrac{1}{5x}-\dfrac{1}{4x}=0\)
\(\dfrac{4-5}{20x}\) = 0
\(\dfrac{1}{20x}\) = 0 (vô lí)
Kết luận: Phương trình đã cho vô nghiệm
Toán 7 ?