Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Ta có: F k m a x = m g a 0 = 0 , 05 → a 0 = 0 , 1 r a d
+ W t = 1 2 W d ® W = 3 W t = 3 m g l ( 1 - cos a )
+ Áp dụng bảo toàn cơ năng ta được: 3 m g l ( 1 - cos a ) = m g l ( 1 - cos a 0 )
® cos α = 2 + c os α 0 3
+ T = m g ( 3 cos a - 2 cos a 0 ) = 0 , 5025 N
Đáp án B
D Đáp án B
+ Ta có: Fkmax = mga0 = 0,05 ® a0 = 0,1 rad
+ W t = 1 2 W d => W = 3 Wt = 3mgl(1- cosa)
+ Áp dụng bảo toàn cơ năng ta được: 3mgl(1 - cosa) = mgl(1 - cosa0)
→ cos α = 2 + cos α 0 3
+ T = mg(3cosa - 2cosa0) = 0,5025 N
Với con lắc đơn, ta có hệ số hồi phục \(k=\frac{mg}{l}\)
Lực hồi phục: \(F_{hp}=-kx\)
Với x là li độ dài, \(x=\alpha l\)
Suy ra: \(F_{hp}=-\frac{mg}{l}.\alpha l=-mg\alpha\) \(\Rightarrow F_{hpmax}=mg\alpha_0\) \(\Rightarrow\alpha_0=\frac{F_{hpmax}}{mg}=\frac{0,1}{0,1.10}=0,1rad\)(1)
Lực căng dây: \(\tau=mg\left(3\cos\alpha-2\cos\alpha_0\right)=mg\left(3\left(1-2\sin^2\frac{\alpha}{2}\right)-2\left(1-2\sin^2\frac{\alpha_0}{2}\right)\right)=mg\left(1+\alpha_0^2-\frac{3}{2}\alpha^2\right)\)(do góc \(\alpha\) rất nhỏ nên ta lấy gần đúng)
Tại vị trí \(W_t=\frac{1}{2}W_đ\Leftrightarrow W=3W_t\Leftrightarrow\alpha_0^2=3\alpha^2\Leftrightarrow\alpha=\frac{\alpha_0}{\sqrt{3}}\)
Như vậy, lực căng dây tại vị trí này là: \(\tau=mg\left(1+\alpha_0^2-\frac{3}{2}\alpha^2\right)=mg\left(1+\alpha_0^2-\frac{3}{2}\frac{\alpha_0^2}{3}\right)=mg\left(1+\frac{\alpha_0^2}{2}\right)\)
Thay từ (1) vào ta đc: \(\tau=0,1.10\left(1+\frac{0,1^2}{2}\right)=1,005N\)
Chắc là C quá.
Theo mình thì VTCB chỉ có lực căng dây cực đại.Hợp lực cực đại khi chắc là ở biên.
Gia tốc của vật nặng là gia tốc hướng tâm vì nó chuyển động tròn đều nên không hướng về VTCB.
Chọn gốc thế năng tại VT dây thẳng đứng.
Áp dụng định luật bảo toàn năng lượng ta có:
\(W=mgl\left(1-\cos\alpha_0\right)=W_d+W_t=W_d+mgl\left(1-\cos\alpha\right)\)
\(\Rightarrow W_d=mgl\left(1-\cos\alpha_0-1+\cos\alpha\right)=mgl\left(\frac{\alpha^2_0}{2}-\frac{\alpha^2}{2}\right)\)
\(=0,1.10.0,8.\left(\frac{\left(\frac{8}{180}\pi\right)^2-\left(\frac{4}{180}\pi\right)^2}{2}\right)\approx5,84\left(mJ\right)\)
Ta có :
\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)
\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)
Ta có: \(v=\omega\sqrt{s^2_0-s^2}=\sqrt{gl\left(\alpha^2_0-a^2_1\right)}\)\(=0,271\left(m\right)=27,1\left(cm\text{/}s\right)\)
+ Ta có: Fkmax = mga0 = 0,05 ® a0 = 0,1 rad
+ W t = 1 2 W d → W = 3 Wt = 3mgl(1- cosa)
+ Áp dụng bảo toàn cơ năng ta được: 3mgl(1 - cosa) = mgl(1 - cosa0)
cos α = 2 + cos α 0 3
+ T = mg(3cosa - 2cosa0) = 0,5025 N
ü Đáp án B