này...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

bài 2
1)
/2x-7/+\(\dfrac{1}{2}=1\dfrac{1}{2}\)
/2x-7/+\(\dfrac{1}{2}=\dfrac{3}{2}\)
/2x-7/=1
=>   2x-7=1   hoặc   -2x+7 =1
       2x=8       hoặc   -2x=-6
       x=4         hoặc     x=3

Bài 1: 

1: Ta có: \(A=\left(-1\right)^3\cdot\left(-\dfrac{7}{8}\right)^3\cdot\left(-\dfrac{2}{7}\right)^2\cdot\left(-7\right)\cdot\left(-\dfrac{1}{14}\right)\)

\(=\dfrac{7^3}{8^3}\cdot\dfrac{4}{49}\cdot\dfrac{1}{2}\)

\(=\dfrac{343}{512}\cdot\dfrac{2}{49}\)

\(=\dfrac{7}{256}\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:

$4+(y-1)^2\geq 4\Rightarrow \frac{8}{4+(y-1)^2}\leq 2$ 

Mặt khác, áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$|x-1|+|x-3|=|x-1|+|3-x|\geq |x-1+3-x|=2$

$\Rightarrow |x-1|+|x-2|+|x-3|\geq 2+|x-2|\geq 2$
Vậy $\frac{8}{4+(y-1)^2}\leq 2\leq |x-1|+|x-2|+|x-3|$
Dấu "=" xảy ra khi:

\(\left\{\begin{matrix} (y-1)^2=0\\ (x-1)(3-x)\geq 0\\ x-2=0\end{matrix}\right.\Leftrightarrow y=1; x=2\)

30 tháng 8 2021

1/ 

Xét tg AOC và tg BOD có

OA=OB; OC=OD

\(\widehat{AOC}=\widehat{BOD}\) (góc đối đỉnh)

\(\Rightarrow\Delta AOC=\Delta BOD\left(c.g.c\right)\)

Ta có OA=OB; OC=OD => ACBD là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường thig tứ giác đó là hbh) => AC//BD (trong hình bình hành các cặp cạnh đối // với nhau từng đôi một)

2/ Xét tg ACD và tg BDC có

DC chung

AC=BD; AD=BC (trong hbh các cặp cạnh đối bằng nhau từng đôi một)

\(\Rightarrow\Delta ACD=\Delta BDC\left(c.c.c\right)\)

3/

Xet tg DAE và tg CBF có

AD=BC (cạnh đối hbh ACBD)

AE=BF (giả thiết)

\(\widehat{DAE}=\widehat{CBF}\) (Hai góc đối của hình bình hành ACBF)

\(\Rightarrow\Delta DAE=\Delta CBF\left(c.g.c\right)\)

4/

Ta có 

CE//DF (cạnh đối của hbh ACBF)

CE=AC-AE; DF=BD-BF

mà AC=BD; AE=BF

=> CE=DF

=> ECFD là hình bình hành (tứ giác có cặp cạnh đối // và bằng nhau là hbh)

=> DE//CF (trong hbh các cặp cạnh đối // với nhau từng đôi một)

Trong hbh ECFD có EF và CD là hai đường chéo

=> EF và CD cắt nhau tại trung điểm mỗi đường (Trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)

Mà O là trung điểm CD => O là trung điểm của EF => E; O; F thẳng hàng

30 tháng 8 2021

1/

Xét tg ABC có AB=AC => tg ABC cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\) (Trong tg cân hai góc ở đáy = nhau)

BH=CH => AH là đường trung tuyến \(\Rightarrow AH\perp BC\) (trong tg cân đường trung tuyến xp từ đỉnh đồng thời là đường cao và đường trung trực)

2/ Ta có

\(MN\perp BC;CP\perp BC\) => MN//CP

MN=CP

=> Tứ giác MNPC là hình bình hành (Tứ giác có cặp cạnh đối // và = nhau thì tứ giác đó là hbh)

=> MN=CP; MC=NP; MP chung \(\Rightarrow\Delta MCP=\Delta PMN\left(c.c.c\right)\)

3/

Trong hình bình hành MNPC thì MP và NC là hai đường chéo hbh 

=> I là trung điểm của NC (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)

30 tháng 8 2021

bạn ơi giúp mình nốt bài 3 này nha mình cảm ơn nhiềuundefined