Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phép thử T được xét là: "Từ bốn tấm bìa đã cho, rút ngẫu nhiên ba tâm".
a) Đồng nhất số i với tấm bìa được đánh số i, i = , ta có: mỗi một kết quả có thể có của phép thử T là một tổ hợp chập 3 của 4 số 1, 2, 3, 4. Do đó không gian mẫu là:
Ω = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}.
Số phần tử của không gian mẫu là n(Ω) = C34 = 4.
Vì lấy ngẫu nhiên, nên các kết quả cso thể có của phép thử T là đồng khả năng.
b) A = {(1, 3, 4)}; B = {(1, 2, 3), (2, 3, 4)}
c) P(A) = ; P(B) = = .
a) Không gian mẫu là tập hợp các số từ 1 đến 25, được ký hiệu là Ω = 1,2,3,…,25.
b) Biến cố P là tập hợp các số chia hết cho 4, được ký hiệu là P = {4,8,12,16,20,24}.
Biến cố Q là tập hợp các số chia hết cho 6, được ký hiệu là Q = {6,12,18,24}.
Biến cố S là giao của hai biến cố P và Q, nghĩa là các số vừa chia hết cho 4 và vừa chia hết cho 6, được ký hiệu là S = P ∩ Q = {12,24}.
Vậy P, Q và S lần lượt là các tập con của không gian mẫu Ω.
a: Ω={1;2;3;...;25}
n(Ω)=25
b: S=PQ là số ghi trên tấm thẻ vừa chia hết cho 4 vừa chia hết cho 6
P={4;8;12;16;20;24}
Q={6;12;18;24}
S={12;24}
Biến cố P,Q,S lần lượt là các tập hợp con của không gian mẫu
Không gian mẫu \(C_9^4\)
Các tấm bìa gồm 5 tấm số lẻ và 4 tấm số chẵn
Để tổng 4 số là số lẻ khi số số lẻ là lẻ
\(\Rightarrow\) có 1 hoặc 3 tấm bìa mang số lẻ
Số biến cố thỏa mãn: \(C_5^1C_4^3+C_5^2C_4^2\)
Xác suất: \(P=\dfrac{C_5^1C_4^3+C_5^2C_4^2}{C_9^4}\)
a.Không gian mẫu gồm 4 phần tử:
Ω = {(1, 2, 3);(1,2,4);(2,3,4);(1,3,4)} ⇒ n(Ω)=4
b.Các biến cố:
+ A = {1, 3, 4} ⇒ n(A) = 1
+ B = {(1, 2, 3), (2, 3, 4)} ⇒ n(B) = 2