Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Không gian mẫu gồm 4 phần tử:
Ω = {(1, 2, 3);(1,2,4);(2,3,4);(1,3,4)} ⇒ n(Ω)=4
b.Các biến cố:
+ A = {1, 3, 4} ⇒ n(A) = 1
+ B = {(1, 2, 3), (2, 3, 4)} ⇒ n(B) = 2
a) Không gian mẫu là tập hợp các số từ 1 đến 25, được ký hiệu là Ω = 1,2,3,…,25.
b) Biến cố P là tập hợp các số chia hết cho 4, được ký hiệu là P = {4,8,12,16,20,24}.
Biến cố Q là tập hợp các số chia hết cho 6, được ký hiệu là Q = {6,12,18,24}.
Biến cố S là giao của hai biến cố P và Q, nghĩa là các số vừa chia hết cho 4 và vừa chia hết cho 6, được ký hiệu là S = P ∩ Q = {12,24}.
Vậy P, Q và S lần lượt là các tập con của không gian mẫu Ω.
a: Ω={1;2;3;...;25}
n(Ω)=25
b: S=PQ là số ghi trên tấm thẻ vừa chia hết cho 4 vừa chia hết cho 6
P={4;8;12;16;20;24}
Q={6;12;18;24}
S={12;24}
Biến cố P,Q,S lần lượt là các tập hợp con của không gian mẫu
a) Không gian mẫu là các tấm thẻ được đánh số nên nó gồm 15 phần tử, ký hiệu \(\Omega = \left\{ {1;2;3;...;15} \right\}\)
b) A là biến cố “Số ghi trên tấm thẻ nhỏ hơn 7” nên \(A = \left\{ {1;2;3;4;5;6} \right\}\)
B là biến cố “Số ghi trên tấm thẻ là số nguyên tố” nên \(B = \left\{ {2;3;5;7;11;13} \right\}\)
\(A \cup B = \left\{ {1;2;3;4;5;6;7;11;13} \right\}\)
\(AB = \left\{ {2;3;5} \right\}\)
Phép thử T được xét là: "Từ bốn tấm bìa đã cho, rút ngẫu nhiên ba tâm".
a) Đồng nhất số i với tấm bìa được đánh số i, i = , ta có: mỗi một kết quả có thể có của phép thử T là một tổ hợp chập 3 của 4 số 1, 2, 3, 4. Do đó không gian mẫu là:
Ω = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}.
Số phần tử của không gian mẫu là n(Ω) = C34 = 4.
Vì lấy ngẫu nhiên, nên các kết quả cso thể có của phép thử T là đồng khả năng.
b) A = {(1, 3, 4)}; B = {(1, 2, 3), (2, 3, 4)}
c) P(A) = ; P(B) = = .