Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có biêu thức trên\(\: < \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}\)=\(\frac{2012}{2013}< 1\)
do dó biểu thức <1
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}\)
\(A=\frac{2^{100}-1}{2^{100}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}\)
hok tốt!!
_ giải bừa :v _
\(T=\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{14^2}\)
Ta thấy : \(\frac{1}{4^2}< \frac{1}{2.4};\frac{1}{14^2}< \frac{1}{12.14}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{14^2}< \frac{1}{2^2}+\frac{1}{2.4}+...+\frac{1}{12.14}\)
\(\Rightarrow T< \frac{1}{2^2}+\frac{1}{2}\left(\frac{2}{2.4}+...+\frac{2}{12.14}\right)\)
\(\Rightarrow T< \frac{1}{2^2}+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{14}\right)\)
\(\Rightarrow T< \frac{1}{4}+\frac{1}{2}.\frac{3}{7}\)
\(\Rightarrow T< \frac{13}{28}\)
Mà \(\frac{13}{28}< \frac{1}{2}\Rightarrow T< \frac{1}{2}\)
....
Gọi tập hợp các phân số đó là A, ta có:
\(\frac{-3}{4}< A< \frac{-1}{2}\)
\(\Leftrightarrow\frac{-33}{44}< A< \frac{-22}{44}\)
Vì phân số có mẫu là 11\(\Rightarrow\)tử số chia hết cho 4( vì mẫu là 44)
\(\Rightarrow A=\left\{\frac{-32}{44};\frac{-28}{44};\frac{-24}{44}\right\}\)hay \(A=\left\{\frac{-8}{11};\frac{-7}{11};\frac{-6}{11}\right\}\)
Hok tốt nhé
\(\frac{1}{9}+\frac{8}{9}=\frac{1+8}{9}=\frac{9}{9}=1\)
\(\frac{1}{12}+\frac{2}{12}+\frac{6}{12}+\frac{3}{12}=\frac{1+2+6+3}{12}=\frac{12}{12}=1\)
Chúc bạn học tốt !!
\(\frac{1}{9}\)+\(\frac{8}{9}\)=\(\frac{1+8}{9}\)=\(\frac{9}{9}\)=\(1\)
\(\frac{1}{12}\)+\(\frac{2}{12}\)+\(\frac{6}{12}\)+\(\frac{3}{12}\)=\(\frac{1+2+6+3}{12}\)=\(\frac{12}{12}\)=\(1\)
Điều kiện a \(\ne\) 0, a \(\ne\) -1
Xét vế phải:
\(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
= \(\frac{a\left(a+1\right)+\left(a+1\right)}{\left(a+1\right)a\left(a+1\right)}\)
= \(\frac{\left(a+1\right)\left(a+1\right)}{a\left(a+1\right)\left(a+1\right)}\)
= \(\frac{1}{a}\)(đpcm)
ta có \(\frac{1}{a+1}\)+ \(\frac{1}{a\left(a+1\right)}\)= \(\frac{a}{a.\left(a+1\right)}\)+ \(\frac{1}{a.\left(a+1\right)}\)( chỗ này ta có đc là nhờ bước quy đồng ) = \(\frac{a+1}{a.\left(a+1\right)}\)= \(\frac{1}{a}\)( còn chỗ này thì ta có nhờ rút gọn )
^_^ chúc bn học tốt ...........^_^
Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(.\) \(.\)
\(.\)
\(.\) \(.\)
\(.\) \(.\)
\(\frac{1}{2013^2}< \frac{1}{2012\cdot2013}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{2013^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}\)
Mà \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}=1-\frac{1}{2013}< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2013^2}< 1\)
Nhớ k cho mình nhé!
Chúc các bạn học tốt!
mình giải ở đè trước rồi