Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(.\) \(.\)
\(.\)
\(.\) \(.\)
\(.\) \(.\)
\(\frac{1}{2013^2}< \frac{1}{2012\cdot2013}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{2013^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}\)
Mà \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}=1-\frac{1}{2013}< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2013^2}< 1\)
Nhớ k cho mình nhé!
Chúc các bạn học tốt!
a, 11 1/4-(2 5/7+5 1/4)
= 45/4-(19/7+21/4)
= 45/4-223/28
=23/7
b, (8 5/11+3 5/8)-3 5/11
=(93/11+29/8)-38/11
=1063/88-38/11
=69/8
a, =\(11\frac{1}{4}-2\frac{5}{7}-5\frac{1}{4}\)
\(=\left(11\frac{1}{4}-5\frac{1}{4}\right)-2\frac{5}{7}\)
\(=6-2\frac{5}{7}\)
\(=\frac{23}{7}\)
b, \(=8\frac{5}{11}+3\frac{5}{8}-3\frac{5}{11}\)
\(=\left(8\frac{5}{11}-3\frac{5}{11}\right)+3\frac{5}{8}\)
\(=5+3\frac{5}{8}\)
\(=\frac{69}{8}\)
\(\left(4\frac{46}{65}+x\right).1\frac{1}{12}=5,75\)
\(\Rightarrow\frac{306}{65}+x.\frac{13}{12}=\frac{23}{4}\)
\(\Rightarrow\frac{51}{10}+\frac{13}{12}x=\frac{23}{4}\)
\(\Rightarrow306x=65x=345\)
\(\Rightarrow65x=39\)
\(\Rightarrow x=\frac{3}{5}\)
b, \(\frac{5}{4}-\left(\frac{3}{2}x+0,5\right)=1\frac{1}{4}\)
\(\Rightarrow\frac{5}{4}-\frac{3}{2}x-0,5=\frac{5}{4}\)
\(\Rightarrow\frac{5}{4}-\frac{3}{2}x-\frac{1}{2}=\frac{5}{4}\)
\(\Rightarrow\frac{3}{4}-\frac{3}{2}x=\frac{5}{4}\)
\(\Rightarrow3-6x=5\)
\(\Rightarrow-6x=2\)
\(\Rightarrow x=-\frac{1}{3}\)
Phần b) chị sai nhé ! Dấu [ ] là phần nguyên nâng cao của lớp 6 nhé.
\(\frac{1}{2}a-\frac{3}{4}=\frac{5}{15}\)
\(\Leftrightarrow\frac{1}{2}a-\frac{3}{4}=\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{2}a=\frac{1}{3}+\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}a=\frac{4}{12}+\frac{9}{12}\)
\(\Leftrightarrow\frac{1}{2}a=\frac{13}{12}\)
\(\Leftrightarrow a=\frac{13}{12}\div\frac{1}{2}\)
\(\Leftrightarrow a=\frac{13}{12}\times\frac{2}{1}\)
\(\Leftrightarrow a=\frac{13}{6}\)
\(\left(x+\frac{1}{8}\right):\frac{2}{3}=3-\frac{3}{4}\)
\(\left(x+\frac{1}{8}\right):\frac{2}{3}=\frac{9}{4}\)
\(x+\frac{1}{8}=\frac{9}{4}.\frac{2}{3}\)
\(x+\frac{1}{8}=\frac{3}{2}\)
\(x=\frac{3}{2}-\frac{1}{8}\)
\(x=\frac{11}{8}\)
Vậy \(x=\frac{11}{8}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}\)
\(A=\frac{2^{100}-1}{2^{100}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}\)
hok tốt!!
mk chỉ tiềm đc bài i hệt bài của bn
https://olm.vn/hoi-dap/detail/99402078680.html
Xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Khi đó:
\(1-\frac{2}{2.3}=\frac{1.4}{2.3}\) ; \(1-\frac{2}{3.4}=\frac{2.5}{3.4}\) ; ... ; \(1-\frac{2}{101.102}=\frac{100.103}{101.102}\)
\(\Rightarrow M=\frac{1.4}{2.3}\cdot\frac{2.5}{3.4}\cdot\cdot\cdot\frac{100.103}{101.102}\)
\(M=\frac{\left(1.2...100\right).\left(4.5...103\right)}{\left(2.3...101\right).\left(3.4...102\right)}=\frac{103}{101.3}=\frac{103}{303}\)
Vậy \(M=\frac{103}{303}\)
Điều kiện a \(\ne\) 0, a \(\ne\) -1
Xét vế phải:
\(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
= \(\frac{a\left(a+1\right)+\left(a+1\right)}{\left(a+1\right)a\left(a+1\right)}\)
= \(\frac{\left(a+1\right)\left(a+1\right)}{a\left(a+1\right)\left(a+1\right)}\)
= \(\frac{1}{a}\)(đpcm)
ta có \(\frac{1}{a+1}\)+ \(\frac{1}{a\left(a+1\right)}\)= \(\frac{a}{a.\left(a+1\right)}\)+ \(\frac{1}{a.\left(a+1\right)}\)( chỗ này ta có đc là nhờ bước quy đồng ) = \(\frac{a+1}{a.\left(a+1\right)}\)= \(\frac{1}{a}\)( còn chỗ này thì ta có nhờ rút gọn )
^_^ chúc bn học tốt ...........^_^