K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

không trả lời

14 tháng 7 2016

Suốt ngày nôn ọe . Nếu bn ko bít làm thì đừng trả lời!!! bucqua

14 tháng 7 2016

\(1+5+5^2+5^3+...+5^{101}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{100}+5^{101}\right)\)

\(=1+5+5^2\left(1+5\right)+5^4\left(1+5\right)+...+5^{100}\left(1+5\right)\)

\(=6+5^2.6+5^4.6+...+5^{100}.6\)

\(\Rightarrow6+6\left(5^2+5^4+5^6+...5^{100}\right)⋮6\)

\(\Rightarrow1+5+5^2+5^3+...+5^{101}⋮6\)

14 tháng 7 2016

câu b với bài 2 nữa nhé rùi mình tick cho

 

18 tháng 6 2018

a, 4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 5

= ( 4 + \(4^2\) ) + ( \(4^3\) + \(4^4\) ) +... + ( \(4^{59}\) + \(4^{60}\))

= ( 4 + \(4^2\) ) + \(4^3\) . ( 4 + \(4^2\) ) +... + \(4^{59}\). ( 4 + \(4^2\) )

= 20 + \(4^3\) . 20 + ... + \(4^{59}\) . 20

= 20 . ( 1 + \(4^3\) + ... + \(4^{59}\) ) chia hết cho 5

4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 21

= ( 4 + \(4^2\) + \(4^3\) ) + ( \(4^4\) + \(4^5\) + \(4^6\) ) + ... + ( \(4^{58}\)+ \(4^{59}\) + \(4^{60}\) )

= ( 4 + \(4^2\) + \(4^3\) ) + \(4^4\) . ( 4 + \(4^2\) + \(4^3\) ) + ... + \(4^{58}\) . ( 4 + \(4^2\) + \(4^3\) )

= 84 + \(4^4\) . 84 + .... + \(4^{58}\) . 84

= 84 . ( 1 + \(4^4\) + ... + \(4^{58}\) ) chia hết cho 21

b, 5 + \(5^2\) + \(5^3\) + ... + \(5^{10}\) chia hết cho 6

= ( 5 + \(5^2\) ) + ( \(5^3\) + \(5^4\) ) + ... + ( \(5^9\) + \(5^{10}\) )

= ( 5 + \(5^2\) ) + \(5^3\) . ( 5 + \(5^2\) ) + ... + \(5^9\) . ( 5 + \(5^2\) )

= 30 + \(5^3\) . 30 + ... + \(5^9\) . 30

= 30 . ( 1 + \(5^3\) + ... + \(5^9\) ) chia hết cho 6

16 tháng 10 2017

biểu thứ là gì?

10 tháng 1 2018

M = 5 + 52 + 53 + ... + 52012.

    = ( 5+1 ).52 + ( 5+1 ). 53 +...+( 5+1 ). 5 80

    =6. 52 + 6. 53 + ...+ 6. 5 80

    =\(6\).52.53x...x5 80

Vậy M chia hết cho 6.

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

12 tháng 7 2019

b , Số số hạng của S là : ( 100 - 1 ) : 1 + 1 = 100 ssh 

Ta chia S thành 20 nhóm , mỗi nhóm 2 số hạng 

=> S = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 ) 

=> S = 2 . ( 1 + 2 + 22 + 23 + 24 ) + ... + 2 96 . ( 1 + 2 + 22 + 23 + 24 ) 

=> S = 2 . 31 + ... + 296 . 31 

=> S = 31 . ( 2 + .. + 296 ) chia hết cho 31

Vậy S chia hết cho 31 ( đpcm )

2 tháng 12 2018

ta có: 

10^100=(2.5)^100=2^100.5^100

mà 5^100 chia hết cho 5

=> 10^100 chia hết cho 5