Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a :
\(VT=\) \(\left(x-1\right)\left(x^2+x+1\right)=x^3-1^3=VP\)
Câu b :
\(VT=\)\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4=VP\)
Tương tự bạn khai triển là ra nhé
Phân tích đến đây rồi ạ :
\(2xy+2yz+2zx=2x^2+2y^2+2z^2\)
Từ cái này suy ra được đpcm hay cần thêm bước nào nữa k ạ ?
\(VT=2x^2+2y^2+2z^2-2xy-2yz-2zx=2\left(x^2+y^2+z^2-xy-yz-zx\right)\)\(VT=VP\Leftrightarrow2\left(x^2+y^2+z^2-2xy-2yz-2zx\right)=0\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx=0\)
\(\Leftrightarrow x^2+y^2+z^2=xy+yz+zx\)
Mà \(x^2+y^2+z^2\ge xy+yz+zx\)(tự c/m)
(Dấu "="\(\Leftrightarrow x=y=z\))
=> đpcm
Đặt: \(E=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Ta có: \(F-E=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)
\(\Leftrightarrow F=E\)
Từ đó ta có:
\(2F=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\frac{\left(x^2+y^2\right)}{2\left(x+y\right)}+\frac{\left(y^2+z^2\right)}{2\left(y+z\right)}+\frac{\left(z^2+x^2\right)}{2\left(z+x\right)}\)
\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)
\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)
\(\Rightarrow F\ge\frac{1}{4}\)
Dấu = xảy ra khi \(x=y=z=\frac{1}{3}\)
Bạn ơi, cho mình hỏi này
Sao có \(\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\) và sao có \(\frac{\left(x^2+y^2\right)}{2}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}\)
Giải đáp tận tình hộ mình nhé.
Ây za,mik ko bt có đúng ko nhưng mik thử làm nhé.
Đặt \(x^4+y^4+z^4=a;x^2+y^2+z^2=b;x+y+z=c\)
\(\Rightarrow M=2a-b^2-2bc^2+c^4\)
\(M=2a-2b^2+b^2-2bc^2+c^4\)
\(M=2\left(a-b^2\right)+\left(b-c^2\right)^2\)
Mà:
\(a-b^2=-2\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(b-c^2=-2\left(xy+yz+zx\right)\)
Khi đó:
\(M=-4\left(x^2y^2+y^2z^2+z^2x^2\right)+4\left(xy+yz+zx\right)^2\)
\(M=-4x^2y^2-4y^2z^2-4z^2x^2+4x^2y^2++4y^2z^2+4z^2x^2+4z^2x^2+8x^2yz+8xy^2z+8xyz^2\)
\(M=8xyz\left(x+y+z\right)\)
1: \(=\dfrac{\left(x^2+2xy+y^2\right)-1}{\left(x^2+2x+1\right)-y^2}\)
\(=\dfrac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}=\dfrac{x+y-1}{x-y+1}\)
2: \(=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}\)
\(=\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{x^2-xy+y^2}\)
3: \(=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{2x^2+2y^2+2z^2-2xy-2yz-2xz}\)
\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{2\left(x^2+y^2+z^2-xy-yz-xz\right)}\)
\(=\dfrac{x+y+z}{2}\)
Ta có
\(\left(x^2+y^2+z^2\right)^2-2\left(x^4+y^4+z^4\right)\)
\(=2x^2y^2+2y^2z^2+2z^2x^2-x^4-y^4-z^4\)
\(=\left(z^2x^2+2z^2xy+z^2y^2\right)+\left(z^2x^2-2z^2xy+z^2y^2\right)+\left(-x^4+2x^2y^2-y^4\right)-z^4\)
\(=z^2\left(x+y\right)^2+z^2\left(x-y\right)^2-\left(x^2-y^2\right)^2-z^4\)
\(=z^2\left(\left(x+y\right)^2-z^2\right)-\left(x-y\right)^2\left(\left(x+y\right)^2-z^2\right)\)
\(=\left(\left(x+y\right)^2-z^2\right)\left(z^2-\left(x-y\right)^2\right)\)
\(=\left(x+y+z\right)\left(x+y-z\right)\left(z-x+y\right)\left(z+x-y\right)=0\)
Vậy \(\left(x^2+y^2+z^2\right)^2=2\left(x^4+y^4+z^4\right)\)
khó vậy