Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x+y\right)^2+\left(x-y\right)^2=x^2+2xy+y^2+x^2-2xy+y^2=2\left(x^2+y^2\right)\)\(b,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2=2x^2-2y^2+x^2+2xy+y^2+x^2-2xy+y^2=3x^2\)\(c,\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)=\left[\left(x-y+z\right)-\left(z-y\right)\right]^2=\left(x-2y\right)^2\)
a) \(\left(x+y\right)^2+\left(x-y\right)^2\)
=\(\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)\)
=\(x^2+2xy+y^2+x^2-2xy+y^2\)
\(2x^2+2y^2=2\left(x^2+y^2\right)\)
b) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
=\(\left[\left(x-y\right)+\left(x+y\right)\right]^2\)
= \(\left(x-y+x+y\right)^2\)
\(=2x^2\)
c) \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)
\(=\left(x-y+z\right)^2-2\left(x-y+z\right)\left(z-y\right)+\left(z-y\right)^2\)
\(=\left[\left(x-y+z\right)-\left(z-y\right)\right]^2\)
= \(\left(x-y+z-z+y\right)^2=x^2\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
1: \(=\dfrac{\left(x^2+2xy+y^2\right)-1}{\left(x^2+2x+1\right)-y^2}\)
\(=\dfrac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}=\dfrac{x+y-1}{x-y+1}\)
2: \(=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}\)
\(=\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{x^2-xy+y^2}\)
3: \(=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{2x^2+2y^2+2z^2-2xy-2yz-2xz}\)
\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{2\left(x^2+y^2+z^2-xy-yz-xz\right)}\)
\(=\dfrac{x+y+z}{2}\)
nâng cao phát triển toán 8 tập 1 mình ngại viết nên bạn vào đó xem nhé