Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (IJK) và (ACD)
có I thuộc (IJK) giao (ACD)
Trong (BCD) vẽ JK cắt CD tại E
=> E thuộc (IJK) giao (ACD) (đoạn này m ghi tắt :D)
Vậy IE là giao tuyến của (IJK) và (ACD)
Ta có E thuộc IE, IE là con của (IJK)
E thuộc CD
=> E là giao điểm của CD với (IJK)
b) Xét (ABD) và (IJK)
K thuộc (ABD) giao (IJK)
=> Kx là giao tuyến của (ABD) và (IJK)
mà AB // IJ
=> Kx // AB
Trong (ABD) vẽ Kx cắt AD tại F
=> F là giao điểm của AD và (IJK)
Ta có Kx // AB và Kx // IJ (cmt)
mà F thuộc Kx
=> KF // IJ
a: Xét ΔAMB có ME là đường phân giác
nên AE/EB=AM/MB=AM/MC(4)
XétΔAMC có MD là đường phân giác
nên AD/DC=AM/MC(5)
Từ (4) và (5) suy ra AE/EB=AD/DC
b: Xét ΔABC có
AE/EB=AD/DC
nên ED//BC
Xét ΔABM có EI//BM
nên EI/BM=AE/AB(1)
Xét ΔACM có ID//MC
nên ID/MC=AD/AC(2)
Xét ΔABC có
ED//BC
nên AE/AB=AD/AC(3)
Từ (1), (2) và (3) suy ra EI/BM=DI/MC
mà BM=CM
nên EI=DI
hay I là trung điểm của ED
Đặt \(\overrightarrow{DA}=\overrightarrow{a},\overrightarrow{DB}=\overrightarrow{b},\overrightarrow{DC}=\overrightarrow{c}\) và \(\left|\overrightarrow{a}\right|=\overrightarrow{a},\left|\overrightarrow{b}\right|=\overrightarrow{b},\left|\overrightarrow{c}\right|=\overrightarrow{c}\)
Đặt tiếp \(\widehat{BDC}=\alpha,\widehat{CDA}=\beta,\widehat{ADB}=\gamma\)
Từ giả thiết suy ra EIHF là hình bình hành. Nhưng EH = FI nên đó là hình chữ nhật
Suy ra : \(EF\perp EI\Rightarrow\overrightarrow{AB}.\overrightarrow{DC}=0\)
\(\Rightarrow\left(\overrightarrow{b}-\overrightarrow{a}\right).\overrightarrow{c}=0\)
\(\Rightarrow\overrightarrow{a}.\overrightarrow{c}=\overrightarrow{b}.\overrightarrow{c}\) (1)
Hoàn toàn tương tự cũng được
\(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}\) (2)
Từ (1) và (2) suy ra
\(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}\)
\(\Leftrightarrow a.b\cos\gamma=b.c\cos\alpha=c.a\cos\beta\)
\(\Leftrightarrow\frac{a}{\cos\alpha}=\frac{b}{\cos\beta}=\frac{c}{\cos\gamma}\)
=> Điều cần chứng minh
Trong mp(BCD), gọi E là giao điểm của JK và CD
Ta có: \(IE\cap AD=\left\{F\right\}\)
\(IE\subset\left(IJK\right)\)
Do đó: \(AD\cap\left(IJK\right)=F\)
Xét ΔACD có I,F,E thẳng hàng
nên \(\dfrac{AI}{IC}\cdot\dfrac{CE}{ED}\cdot\dfrac{DF}{FA}=1\)
=>\(1\cdot2\cdot\dfrac{DF}{FA}=1\)
=>\(\dfrac{FD}{FA}=\dfrac{1}{2}\)
=>\(\dfrac{FA}{FD}=2\)
bn ơi K thuộc SD hả ? ... nếu vậy thì MK sẽ không thể song song với mặt phẳng ( SBC) đâu nhé :)