Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Trong A B C kẻ M P / / C I P ∈ A C . Trong S A C kẻ P N / / S C N ∈ S A .
⇒ M N P / / S I C ⇒ M N P ≡ α
Suy ra thiết diện giữa α và tứ diện S.ABC là tam giác MNP.
Do S.ABC là tứ diện đều nên ta đặt S A = S B = S C = S D = A B = B C = C A = 2 x
⇒ A I = x ; C I = 2 x 3 2 = x 3
Ta có M P / / C I ⇒ M P C I = A P A C = A M A I = a x ⇒ M P = a x . x 3 = a 3
Tương tự ta có M N = a 3 .
Ta có N P S C = A P A C = a x ⇒ N P = a x . S C = a x .2 x = 2 a .
Chu vi tam giác MNP là C = 2 a + a 3 + a 3 = 2 a 1 + 3 . Ta chọn B.
Đáp án A.
Gọi N, Q lần lượt là trung điểm của AB, CD ⇒ M N ⊥ A B M Q ⊥ A B .
Qua N kẻ đường thẳng song song với BC, cắt SC tại P.
Suy ra thiết diện của mặt phẳng α và hình chóp là MNPQ.
Vì MQ là đường trung bình của hình tháng ABCD ⇒ M Q = 3 a 2 .
MN là đường trung bình của tam giác SAB ⇒ M N = S A 2 = a .
NP là đường trung bình của tam giác SBC ⇒ N P = B C 2 = a 2 .
Vậy diện tích hình thang MNPQ là S M N P Q = M N . N P + M Q 2 = a 2 a 2 + 3 a 2 = a 2 .