Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình trả lời hơi muộn :(
A B C H
1, Theo giả thiết ta có C = 45* nên tam giác ABC là tam giác vuông cân
Suy ra AB = AC = 2 (cm) Mà theo đánh giá của Pitago thì :BC^2 = 8 <=> BC = căn 8
Ta có hệ thức lượng sau : AB.AC=AH.BC <=> 4=căn 8 . AH<=> AH=2/căn2
Lại có hệ thức lượng sau : AC^2=CH.BC<=>4=căn 8 . CH <=> CH=2/căn2
Mặt khác : +)Cos alpha = AB/BC = 2/căn8 = 1/căn2
+)Cos beta = AC/BC = 2/căn8 = 1/căn2
+) Sin alpha = AC/BC = 2/căn8 = 1/căn2
+) Sin beta = AB/BC = 2/căn8 = 1/căn2
Vậy ...
Mấy câu còn lại để từ từ mình làm dần
dung tinh chat : tanC.cotC=1=>cotC=4/3
sau đó dùng tính chất:\(1+cot^2C=\frac{1}{sin^2C}\Rightarrow sin^2C\)=0,36 =>sinC=0,6=>cosC=sinC / tanC=0,8
Ta có : \(\widehat{B}+\widehat{C}=90^o\)
\(\Rightarrow\cos C=\sin B=\frac{1}{3}\)
Ta có : \(\sin^2C+\cos^2C=1\Rightarrow\sin^2C=1-\cos^2C=\frac{8}{9}\)
\(\Rightarrow\sin C=\frac{2\sqrt{2}}{9}\)
cotC=1/tanC = 4/3
=>\(\frac{ac}{ab}=\frac{4}{3}\)=>ac=4k , ab=3k {với k \(\ge\) 0 }
=>BC = 5k
=>sinC =\(\frac{3}{5}\)
cosC=\(\frac{4}{5}\)
tick nha
a, Xét tam giác ABC vuông tại A, đường cao AH
cotC = 7/11 => \(\frac{AB}{AC}=\frac{7}{11}\Rightarrow AB=\frac{7}{11}.AC=\frac{7}{11}.28=\frac{196}{11}\)cm
Theo định lí Pytago cho tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\frac{196}{11}\right)^2+28^2}=33,188...\)cm
b, tanC = 5/7 => \(\frac{AC}{AB}=\frac{5}{7}\Rightarrow AB=\frac{7}{5}AC=\frac{7}{5}.28=\frac{196}{5}\)cm
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\frac{196}{5}\right)^2+28^2}=\frac{28\sqrt{74}}{5}\)cm
c, cosC = 4/5 => \(\frac{AC}{BC}=\frac{4}{5}\Rightarrow BC=\frac{5}{4}AC=\frac{5}{4}.28=35\)cm
Theo định lí Pytago tam giác ABC vuông tại A
\(AB=\sqrt{BC^2-AC^2}=21\)cm
d, sinC = 3/5 => \(\frac{AB}{BC}=\frac{3}{5}\Rightarrow\frac{AB}{3}=\frac{BC}{5}\Rightarrow\frac{BC^2}{25}=\frac{AB^2}{9}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{BC^2}{25}=\frac{AB^2}{9}=\frac{BC^2-AB^2}{25-9}=\frac{AC^2}{16}=49\)
\(\Rightarrow BC=35cm;AB=21cm\)