\(AB=\dfrac{1}{3}BC\). Hãy tính \(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

1)

a) trong tam giac ABC vuong tai A co 

+)BC2=AB2+AC2

suy ra AC=12cm

+)AH.BC=AB.AC

suy ra AH=7,2cm

b) Trong tu giac AMHN co HMA=HNA=BAC=90 do suy ra AMHN la hcn suy ra AH=MN=7,2cm

suy ra MN=7,2cm

c) goi O la giao diem cu MN va AH 

Vi AMHN la hcn (cmt) nen OA=OH=7,2/2=3,6cm

suy ra SBMCN=1/2[OH*(MN+BC)]=39,96cm2
d) Vi AMHN la hcn nen goc AMN=goc HAB 

Trong tam giac ABC vuong tai A co AK la dg trung tuyen ung voi canh huyen BC nen AK=BK=KC

suy ra tam giac AKB can tai K

suy ra goc B= goc BAK

Ta co goc B+ goc BAH=90 do 
tuong duong BAK+AMN=90 do suy ra AK vuong goc voi MN (dmcm)

2 tháng 8 2018

bai 2 sai de ban oi sinx hay cosx chu ko phai sin hay cos

4 tháng 8 2017

Bài 1:

Áp dụng định lí pytago trong tam giác vuông ABC ta có:

BC2=AC2+AB2

BC2=42+32

BC=\(\sqrt{25}\)=5(cm)

Ta có:

Sin B=\(\dfrac{AC}{BC}=\dfrac{4}{5}=0.8\)

Cos B=\(\dfrac{AB}{BC}=\dfrac{3}{5}=0.6\)

Tag B=\(\dfrac{AC}{AB}=\dfrac{4}{3}\)

Cotg B=\(\dfrac{AB}{AC}=\dfrac{3}{4}=0.75\)

22 tháng 9 2017

bài 2:

\(\sin\alpha^2+\cos\alpha^2=1\)

=>0,62+\(\cos\alpha^2=1\)

=>\(\cos\alpha=0,8\)

\(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=>\tan\alpha=\dfrac{0,6}{0,8}=0,75\)

\(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{0,8}{0,6}\)\(\approx1,33\)

15 tháng 7 2019

1) a) Từ C dựng đường cao CF 

Ta có: \(\sin A=\frac{CF}{b};\sin B=\frac{CF}{a}\)\(\Rightarrow\)\(\frac{\sin A}{\sin B}=\frac{\frac{CF}{b}}{\frac{CF}{a}}=\frac{a}{b}\)\(\Leftrightarrow\)\(\frac{a}{\sin A}=\frac{b}{\sin B}\) (1) 

Từ A dựng đường cao AH 

Có: \(\sin B=\frac{AH}{c};\sin C=\frac{AH}{b}\)\(\Rightarrow\)\(\frac{\sin B}{\sin C}=\frac{\frac{AH}{c}}{\frac{AH}{b}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\frac{b}{\sin B}=\frac{c}{\sin C}\) (2) 

(1), (2) => đpcm 

b) từ a) ta có: \(\hept{\begin{cases}\sin A=\frac{CF}{b}\\\cos A=\frac{AF}{b}\end{cases}\Leftrightarrow\hept{\begin{cases}CF=b.\sin A\\AF=b.\cos A\end{cases}}}\)

Có: \(BF=c-AF=c-b.\cos A\)

Py-ta-go: 

\(a^2=BF^2+CF^2=\left(c-b.\cos A\right)^2+\left(b.\sin A\right)^2=c^2+b^2.\cos^2A+b^2.\sin^2A-2bc.\cos A\)

\(=b^2\left(\sin^2A+\cos^2A\right)+c^2-2bc.\cos A=b^2+c^2-2bc.\cos A\) (đpcm) 

c) Có: \(\hept{\begin{cases}\cos A=\frac{AF}{b}\\\cos B=\frac{BF}{a}\end{cases}\Rightarrow b.\cos A+a.\cos B=b.\frac{AF}{b}+a.\frac{BF}{a}=AF+BF=c}\)

bài 2 mk có làm r bn ib mk gửi link nhé 

18 tháng 8 2016

cho mk xem câu tl bài này 

19 tháng 8 2016

Cho tam giác ABC vuông tại A. Chứng minh: a/ sin2007B+cosB<\(\frac{5}{4}\)

                                                                  b/ sin2007+cos2008<1

6 tháng 5 2017

Đặt \(f\left(A,B,C\right)=cosA+cosB+cosC+\dfrac{1}{sinA}+\dfrac{1}{sinB}+\dfrac{1}{sinC}-2\sqrt{3}-\dfrac{3}{2}\)

Ta có: \(f\left(A,B,C\right)-f\left(A,\dfrac{B+C}{2},\dfrac{B+C}{2}\right)\)

\(=\left(cosB+cosC-2cos\left(\dfrac{B+C}{2}\right)\right)+\left(\dfrac{1}{sinB}+\dfrac{1}{sinC}-\dfrac{2}{sin\left(\dfrac{B+C}{2}\right)}\right)\)

\(=2cos\left(\dfrac{B+C}{2}\right)\left(cos\left(\dfrac{B-C}{2}\right)-1\right)+\left(\dfrac{1}{sinB}+\dfrac{1}{sinC}-\dfrac{2}{sin\left(\dfrac{B+C}{2}\right)}\right)\left(1\right)\)

Bên cạnh đó ta có:

\(\dfrac{1}{sinB}+\dfrac{1}{sinC}-\dfrac{2}{sin\left(\dfrac{B+C}{2}\right)}\ge\dfrac{4}{sinB+sinC}-\dfrac{2}{sin\left(\dfrac{B+C}{2}\right)}=\dfrac{4\left(1-cos\left(\dfrac{B-C}{2}\right)\right)}{sinB+sinC}\)

Do đó \(\left(1\right)\ge2\left(1-cos\left(\dfrac{B-C}{2}\right)\right)\left(\dfrac{2}{sinB+sinC}-cos\left(\dfrac{B+C}{2}\right)\right)\)

\(=\left(1-cos\left(\dfrac{B-C}{2}\right)\right)\left(\dfrac{1-sin\left(\dfrac{B+C}{2}\right)cos\left(\dfrac{B+C}{2}\right)cos\left(\dfrac{B-C}{2}\right)}{sinB+sinC}\right)\ge0\)

\(\Rightarrow f\left(A,B,C\right)\ge f\left(A,\dfrac{B+C}{2},\dfrac{B+C}{2}\right)\)

Giờ ta chỉ cần chứng minh bất đẳng thức đúng trong trường hợp tam giác cân.

Ta có: \(\left\{{}\begin{matrix}B=\dfrac{\pi}{2}-\dfrac{A}{2}\\cosB=cosC=\dfrac{sinA}{2}\\sinB=sinC=\dfrac{cosA}{2}\end{matrix}\right.\)

\(f\left(A,\dfrac{B+C}{2},\dfrac{B+C}{2}\right)=\left(cosA+2sin\left(\dfrac{A}{2}\right)-\dfrac{3}{2}\right)+\left(\dfrac{1}{sinA}+\dfrac{2}{cos\left(\dfrac{A}{2}\right)}-2\sqrt{3}\right)\)

\(=\dfrac{-2\left(sin\left(\dfrac{A}{2}\right)-1\right)^2}{2}+\dfrac{1+4sin\left(\dfrac{A}{2}\right)-2\sqrt{3}sinA}{sinA}\)

Mà ta có: \(1\ge sin\left(\dfrac{A}{2}+\dfrac{\pi}{3}\right)\)

\(\Rightarrow8sin\left(\dfrac{A}{2}\right)\ge2\sqrt{3}sinA+4sin^2\left(\dfrac{A}{2}\right)\)

\(\Rightarrow1+4sin\left(\dfrac{A}{2}\right)-2\sqrt{3}sinA\ge4sin^2\left(\dfrac{A}{2}\right)-4sin\left(\dfrac{A}{2}\right)+1=\left(2sin\left(\dfrac{A}{2}-1\right)\right)^2\)

Từ đó ta suy ra:

\(f\left(A,\dfrac{B+C}{2},\dfrac{B+C}{2}\right)\ge\left(2sin-1\right)^2\left(\dfrac{1}{sinA}-\dfrac{1}{2}\right)\ge0\)

Vậy bài toán đã được chứng minh. Dấu = xảy ra khi \(A=B=C=\dfrac{\pi}{3}\)

6 tháng 5 2017

Hàm số \(f\left(x\right)=\cos\left(x\right)+\dfrac{1}{\sin\left(x\right)}\) là hàm lồi trên \(\left(0,\pi\right)\)

Do đó theo BĐT Jensen ( trường hợp của Karamata) có:

\(f\left(A\right)+f\left(B\right)+f\left(c\right)\ge3f\left(\dfrac{A+B+C}{3}\right)=3f\left(\dfrac{\pi}{3}\right)=2\sqrt{3}+\dfrac{3}{2}\)

P/s:Tính độ "lầy" của hàm số:

\(f''(x)=-\cos(x)-\frac{1}{\sin(x)}+\frac{2}{(\sin(x))^3}\)

Và cho \(x\in (0,\pi);f''(x)>0\) nếu \(2>(\sin(x))^2(\sin(x)\cos(x)+1)\) là xài dc Jensen :D