K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

mới lớp 7 a ới

5 tháng 8 2020

a) Xét tam giác EBD và tam giác ABC ta có: \(\hept{\begin{cases}\widehat{EBD}-chung\\\widehat{DEB}=\widehat{BAC}\left(=90\right)\end{cases}}\)

\(\Rightarrow|\Delta EBD~\Delta ABC\left(g.g\right)\)

b) Từ 2 tam giác đồng dạng trên, ta có: \(\frac{EB}{AB}=\frac{BD}{BC}\Rightarrow BE.BC=BD.DA\left(dpcm\right)\)

c Xét tam giác BEA và tam giác BDC ta có: \(\hept{\begin{cases}\frac{EB}{AB}=\frac{BD}{BC}\left(cmt\right)\\\widehat{B}-chung\end{cases}}\)

\(\Rightarrow\Delta BEA~\Delta BDC\left(c.g.c\right)\Rightarrow\widehat{BAE}=\widehat{BCD}\left(dpcm\right)\)

15 tháng 5 2017

a) Xét tam giác ADB và tam giác BAC, ta có:
   Góc B chung
   Góc D = góc A (=900)
=> Tam giác ADB đồng dạng tam giác CAB
b) Ko biết chứng minh cái gì
c) Có tam giác ADB đồng dạng tam giác CAB (cmt)
\(\Rightarrow\frac{BD}{AB}=\frac{AB}{BC}\left(1\right)\)
Xét tam giác ABD, có BF là tia phân giác
\(\Rightarrow\frac{AF}{AB}=\frac{FD}{BD}\Rightarrow\frac{BD}{AB}=\frac{DF}{FA}\left(2\right)\)
Xét tam giác ABD, có BD là tia phân giác
\(\Rightarrow\frac{AE}{AB}=\frac{EC}{BC}\Rightarrow\frac{AB}{AE}=\frac{BC}{EC}\Rightarrow\frac{AB}{BC}=\frac{AE}{EC}\left(3\right)\)
Từ (1); (2) và (3)
\(\Rightarrow\frac{DF}{FA}=\frac{AE}{EC}\)

11 tháng 5 2021

Do tỉ số diện tích bằng bình phương tỉ số đồng dạng nên ta có :

 \(\frac{S_{ABC}}{S_{A'B'C'}}=\left(\frac{2}{7}\right)^2=\frac{2^2}{7^2}=\frac{4}{49}\)

Vậy tỉ số diện tích tam giác ABC và tam giác A'B'C' là 4/49