K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
DO đó: ΔABD=ΔACE

Suy ra: AD=AE
hay ΔADE cân tại A

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC
\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔABH=ΔACK

Suy ra: BH=CK và AH=AK

Xét ΔADE có 

AH/AD=AK/AE

nên HK//DE
hay HK//BC

c: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có 

BD=CE
\(\widehat{HBD}=\widehat{KCE}\)

Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)

=>\(\widehat{OCB}=\widehat{OBC}\)

=>ΔOBC cân tại O

=>OB=OC

mà HB=CK

nên OB+HB=OC+CK

=>OH=OK

hay ΔOHK cân tại O

7 tháng 1 2019

a) Tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)

Hay \(\widehat{ABD}=\widehat{ACE}\)

Theo định lý Cos ta có

\(AD=\sqrt{DB^2+AB^2-2\cdot DB\cdot AB\cdot\cos DBA}\)

\(AE=\sqrt{AC^2+CE^2-2\cdot AC\cdot CE\cdot\cos ACE}\)

Vì AB = AC ( tam giác ABC cân tại A ) và DB =CE và góc DBA = góc ACE

Nên AD = AE hay tam giác ADE cân tại A

b)\(\widehat{ADB}=\widehat{AEC}\)(ADE cân)

Nên góc KCE = góc DBH

Vậy \(\widehat{HBA}=\widehat{KCA}\)( góc DBA = góc ACE)

Xét tam giác HBA và tam giác ACK vuông có :

+ góc HBA = góc KCA

+ AB = AC

\(\Rightarrow\Delta HBA=\Delta KCA\left(ch-gn\right)\)=> HB = KC (hai cạnh tương ứng)

7 tháng 1 2019

c) Ta có \(180^0=\widehat{HBA}+\widehat{ABC}+\widehat{OBC}\)

\(180^0=\widehat{ACK}+\widehat{ACB+\widehat{OCB}}\)

\(\widehat{HBA}=\widehat{ACK}\)

\(\widehat{ABC}=\widehat{ACB}\)

Nên \(\widehat{OCB}=\widehat{OBC}\)hay tam giâc OBC cân tại O 

d) Xét tam giác AMB và tam giác AMC 

+ AM chung 

+ BM = MC (gt)

+ AB = AC (gt)

Vậy hai tam giác trên bằng nhau theo trường hợp c-c-c

Và hai góc BAM = góc CAM 

Hay AM là tia phân giác của góc BAC

Xét tam giác AOB và tam giác ACO

+ AB = AC (gt)

+ OB = OC (cmt )

+ góc ABO = góc ACO vì \(\widehat{ABM+\widehat{OBC}=\widehat{ACM}+\widehat{OCB}}\)

Vậy hai tam giác trên bằng nhau theo trường hợp c-g-c

Và góc BAO = góc CAO

Hay AO là phân giác của góc BAC

Một góc chỉ có duy nhất một tia phân giác nên AM và AO là một hay A,M,O thẳng hàng

19 tháng 5 2017

A B C D K E H

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^o\) (kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^o\)(kề bù)

\(\widehat{ABC}=\widehat{ACB}\) (do \(\Delta ABC\) cân tại A)

Do đó: \(\widehat{ABD}=\widehat{ACE}\)

Xét hai tam giác ABD và ACE có:

\(\widehat{BAD}=\widehat{CAE}\) (gt)

AB = AC (do \(\Delta ABC\) cân tại A)

\(\widehat{ABD}=\widehat{ACE}\) (cmt)

Vậy: \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)

Suy ra: BD = CE (hai cạnh tương ứng)

b) Xét hai tam giác BHD và CKE có:

BD = CE (cmt)

\(\widehat{ADB}=\widehat{AEC}\) (\(\Delta ABD=\Delta ACE\))

Vậy: \(\Delta BHD=\Delta CKE\left(ch-gn\right)\)

Suy ra: BH = CK (hai cạnh tương ứng).

15 tháng 1 2022

a) Tam giác ABC cân tại A (gt) \(\Rightarrow\widehat{ABC}=\widehat{ACB}\) (Tính chất tam giác cân).

Mà \(\left\{{}\begin{matrix}\widehat{ABC}+\widehat{ABD}=180^o.\\\widehat{ACB}+\widehat{ACE}=180^o.\end{matrix}\right.\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}.\)

Xét tam giác ABD và tam giác ACE:

+ AB = AC (Tam giác ABC cân tại A).

\(\widehat{ABD}=\widehat{ACE}\left(cmt\right).\)

+ BD = CE (gt).

\(\Rightarrow\) Tam giác ABD = Tam giác ACE (c - g - c).

\(\Rightarrow\) AD = AE (Cặp cạnh tương ứng).

\(\Rightarrow\) Tam giác ADE cân tại A (đpcm).

b) Tam giác ADE cân tại A (cmt). \(\Rightarrow\widehat{ADE}=\widehat{AED}\) (Tính chất tam giác cân).

Xét tam giác DHB và tam giác EKC (\(\widehat{DHB}=\widehat{EKC}=90^o\)) :

\(\widehat{HDB}=\widehat{KEC}\) (\(\widehat{ADE}=\widehat{AED}\)).

+ BD = CE (gt).

\(\Rightarrow\) Tam giác DHB = Tam giác EKC (cạnh huyền - góc nhọn).

\(\Rightarrow\) BH = CK (Cặp cạnh tương ứng).

Ta có: \(\left\{{}\begin{matrix}AH+HD=AD.\\AK+KE=AE.\end{matrix}\right.\)

Mà HD = KE (Tam giác DHB = Tam giác EKC); AD = AE (cmt).

\(\Rightarrow\) AH = AK \(\Rightarrow\) Tam giác AHK cân tại A. \(\Rightarrow\) \(\widehat{AHK}=\left(180^o-\widehat{A}\right):2.\)

Mà \(\widehat{ADE}=\left(180^o-\widehat{A}\right):2\) (Tam giác ADE cân tại A).

\(\Rightarrow\) \(\widehat{AHK}=\widehat{ADE}.\)

Mà 2 góc này ở vị trí đồng vị.

\(\Rightarrow\) HK // BC (dhnb).

c) Tam giác DHB = Tam giác EKC (cmt). \(\Rightarrow\) \(\widehat{HBD}=\widehat{KCE}\) (2 góc tương ứng).

Mà \(\widehat{HBD}=\widehat{CBO}\)\(\widehat{KCE}=\widehat{BCO}\) (đối đỉnh).

\(\Rightarrow\) \(\widehat{BCO}=\widehat{CBO}\)\(\Rightarrow\) Tam giác OBC là tam giác cân tại O.

d) Xét tam giác ABC cân tại A có: AM là trung tuyến (M là trung điểm BC).

\(\Rightarrow\) AM là đường cao (Tính chất các đường trong tam giác cân).

\(\Rightarrow\) \(AM\perp BC.\) (1)

Xét tam giác OBC cân tại O: OM là trung tuyến (M là trung điểm BC).

\(\Rightarrow\) OM là đường cao (Tính chất các đường trong tam giác cân).

\(\Rightarrow\) \(OM\perp BC.\) (2)

Từ (1) và (2) \(\Rightarrow\) 3 điểm O; A; M thẳng hàng.

\(\Rightarrow\) \(M\in AO.\)

Mà O là giao điểm của BH; CK (gt).

\(\Rightarrow\) O là giao điểm của AM; BH; CK.

\(\Rightarrow\) AM; BH; CK đồng quy (đpcm). 

9 tháng 8 2020

1

a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)

rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau 

suy ra AM = AN 

b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)

rồi chứng minh hai tam giác ABH và ACK bằng nhau

suy ra BH = CK

c) vì hai tam giác ABH và ACK bằng nhau (cmt)

nên AH = AK

d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)

nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)

còn lại tự cm

e) dễ cm tam giác ABC đều 

vẽ \(BH\perp AC\)

nên BH vừa là đường cao; phân giác và trung tuyến

dễ cm \(\Delta BHC=\Delta NKC\)

nên \(\widehat{BCH}=\widehat{NCK}=60^0\)

từ đó dễ cm AMN cân và OBC dều

19 tháng 5 2017

A B C D E H K

a) Vì \(\Delta ABC\) cân tại A

=> \(\widehat{B}=\widehat{C}\)

\(\widehat{ABD}+\widehat{ABC}=180^0\) (kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^0\) (kề bù)

Do đó: \(\widehat{ABD}=\widehat{ACE}\)

Xét \(\Delta ABC\)\(\Delta ACE\) có:

AB = AC (gt)

\(\widehat{ABD}=\widehat{ACE}\) (cmt)

DB = CE (gt)

Do đó: \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)

=> \(\widehat{D}=\widehat{E}\) ( hai góc tương ứng)

Xét \(\Delta DBH\)\(\Delta ECK\) có:

\(\widehat{DHB}=\widehat{CKE}\) ( = 900)

DB = CE (gt)

\(\widehat{D}=\widehat{E}\)(cmt)

Do đó: \(\Delta DBH=\Delta ECK\) (ch -gn)

=> BH = CK (hai cạnh tương ứng)

b) Xét \(\Delta ABH\)\(\Delta ACK\) có:

CK = BH ( cmt )

\(\widehat{AHB}=\widehat{AKC}\left(=90^0\right)\)

AB = AC (gt)

Do đó: \(\Delta ABH=\Delta ACK\) ( cạnh huyền - cạnh góc vuông)

6 tháng 2 2018

a) Vì ∆ABC cân tại A nên góc ABC =góc ACB (tính chất tam giác cân)

Ta có: góc ABC + góc ABD=180o (hai góc kề bù)

góc ACB + góc ACE=180o (hai góc kề bù)

Suy ra: góc ABD = góc ACE

Xét ∆ABD và ∆ACE, ta có:

AB = AC (gt)

góc ABD = góc ACE (chứng minh trên)

BD = CE (gt)

Suy ra: ∆ABD = ∆ACE (c.g.c)

⇒ góc D = góc E (hai góc tương ứng)

Xét hai tam giác vuông BHD và CKE, ta có:

góc BHD =góc CKE=90o

BD = CE (gt)

góc D = gócE (chứng minh trên)

Suy ra: ∆BHD = ∆CKE (cạnh huyền, góc nhọn)

Suy ra: BH = CK (hai cạnh tương ứng)

Xét tam giác vuông AHB và ACK, ta có:

góc AHB = gócAKC = 90o

AB = AC (gt)

BH = CK (chứng minh trên)

Suy ra: ∆ABH = ∆ACK (cạnh huyền, cạnh góc vuông)



29 tháng 7 2018

a) Vì tg ABC cân=> ^ABC = ^ACB mà 180-ABC=ABD và 180-ACB=ACE

=> ^ABD = ^ACE

TG ABD = TG ACE (c.g.c)

=> ABD=ACE => TG ADE cân(đpcm)

b) * CM được TG HBD = TG KCE (cạnh huyền- góc nhọn)

=> BH=CK (đpcm)

=> DH=KE

* Ta có: AD = AE (vì TG ADE cân)

DH=KE(CMT)

mà AD - DH = AH

     AE - KE = AK

=> AH = AK

và DH=KE ( CMT)

Do đó: HK là đường trung bình của TG ADE

=> HK // DE

c, ý b là BOC?

^HBD=^KCE (TG HBD= TG KCE )

=> ^CBO = ^BCO (đối đỉnh vs 2 góc = nhau)

=> TG OBC cân