K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 4 2022

Lời giải:
Để pt có 2 nghiệm thì:
$\Delta'=(m^2+2m)^2-(m^2+7)\geq 0$

$\Leftrightarrow m^4+4m^3+3m^2-7\geq 0(*)$
Áp dụng định lý Viet:

$x_1+x_2=2m(m+2)$

$x_1x_2=m^2+7$

Khi đó:

$x_1x_2-2(x_1+x_2)=4$

$\Leftrightarrow m^2+7-4m(m+2)=4$

$\Leftrightarrow -3m^2-8m+3=0$

$\Leftrightarrow (1-3m)(m+3)=0$

$\Leftrightarrow m=\frac{1}{3}$ hoặc $m=-3$

Thử lại với $(*)$ thấy đều không thỏa mãn

Vậy không tồn tại $m$ thỏa mãn đkđb

1 tháng 9 2018

a) để phương trình có 2 nghiệm : \(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\Delta'\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\left(m+2\right)^2-\left(m-3\right)\left(m+1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\6m+7\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{7}{6}\end{matrix}\right.\)

thay \(x_1=2\) vào phương trình ta có :

\(4\left(m-3\right)-4\left(m+2\right)+m+1=0\Leftrightarrow m=19\)

áp dụng hệ thức vi ét ta có : \(x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}=\dfrac{2\left(21\right)}{16}=\dfrac{21}{8}\)

\(\Rightarrow x_2=\dfrac{21}{8}-x_1=\dfrac{21}{8}-2=\dfrac{5}{8}\)

vậy ....................................................................................................

b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}\\x_1x_2=\dfrac{m+1}{m-3}\end{matrix}\right.\)

ta có : \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=10\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=10\Leftrightarrow\dfrac{2\left(m+2\right)}{m-3}:\dfrac{m+1}{m-3}=10\)

\(\Leftrightarrow\dfrac{2m+4}{m+1}=10\Leftrightarrow2m+4=10m+10\Leftrightarrow m=\dfrac{-3}{4}\left(L\right)\)

vậy không có m thỏa mãn điều kiện bài toán .

1 tháng 9 2018

câu 2) a) để phương trình có 2 nghiệm cùng dấu \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\Delta'\ge0\\p>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\left(m+1\right)^2-\left(m-2\right)\left(m-1\right)\ge0\\\dfrac{m-1}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\5m-1\ge0\\\left(m-1\right)\left(m-2\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m\ge\dfrac{1}{5}\\\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>2\) vậy \(m>2\)

b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m+1\right)}{m-2}\\x_1x_2=\dfrac{m-1}{m-2}\end{matrix}\right.\)

ta có : \(x_1^3+x_2^3=64\Leftrightarrow\left(x_1+x_2\right)^3-3\left(x_1x_2\right)\left(x_1+x_2\right)=64\)

\(\left(\dfrac{2m+2}{2-m}\right)^3+6\left(\dfrac{m-1}{m-2}\right)\left(\dfrac{m+1}{m-2}\right)=64\)

\(\Leftrightarrow\dfrac{\left(-2m-2\right)^3}{\left(m-2\right)^3}+\dfrac{6\left(m-1\right)\left(m+1\right)\left(m-2\right)}{\left(m-2\right)^3}=64\)

\(\Leftrightarrow\dfrac{-8m^3-24m^2-24m-8+6m^2-12m^3-6m+12}{m^2-6m^2+12m-8}=64\)

\(\Leftrightarrow\dfrac{-20m^3-18m^2-30m+4}{m^3-6m^2+12m-8}=64\)

\(\Leftrightarrow84m^3-402m^2+798m-516=0\)

giải nốt nha .

a: Khi m=2 thì pt sẽ là \(x^2-2x=0\)

=>x(x-2)=0

=>x=0 hoặc x=2

b: Đề thiếu vế phải rồi bạn

19 tháng 6 2017

1) \(\Delta\)' = \(m^2-m+6\) = \(\left(m-\dfrac{1}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}>0\forall m\)

\(\Rightarrow\) pt có 2 nghiệm phân biệt \(\forall m\)

ta có : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=15\)

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-6\end{matrix}\right.\)

thay ta có : \(4m^2-2m+12=15\) \(\Leftrightarrow\) \(4m^2-2m-3=0\)

giải phương trình ta có : \(\left\{{}\begin{matrix}m=\dfrac{1+\sqrt{13}}{4}\\m=\dfrac{1-\sqrt{13}}{4}\end{matrix}\right.\)

vậy : \(m=\dfrac{1+\sqrt{13}}{4};m=\dfrac{1-\sqrt{13}}{4}\) là thỏa mãng đk bài toán

19 tháng 6 2017

2) ta có : \(\left|x_1-x_2\right|=\sqrt{20}\) \(\Leftrightarrow\) \(\left(x_1-x_2\right)^2=20\) \(\Leftrightarrow\) \(\left(x_1+x_2\right)^2-4x_1x_2=20\)

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-6\end{matrix}\right.\)

thay vào ta có : \(4m^2-4m+24=20\) \(\Leftrightarrow\) \(4m^2-4m+4=0\) (vô nghiệm)

\(\Rightarrow\) không có \(x\) thỏa mãng

18 tháng 6 2015

a) pt có 2 nghiệm dương <=> \(\Delta\ge0;\int^{x1+x2>0}_{x1.x2>0}\Leftrightarrow4\left(m+1\right)^2-4\left(m-4\right)\ge0;\int^{2m+2>0}_{m-4>0}\Leftrightarrow4m^2+4m+4+16\ge0;\int^{m>-1}_{m>4}\)

=> m>4. (cái kí hiệu ngoặc kia là kí hiệu và nha. tại trên này không có nên dùng tạm cái ý)

b) áp dụng hệ thức vi ét ta có: x1+x2=2m+2; x1.x2=m-4

 \(M=\frac{\left(x1+x2\right)^2-2x1x2}{x1-x1.x2+x2-x1.x2}=\frac{\left(2m+2\right)^2-2\left(m-4\right)}{2m+2-2\left(m-4\right)}=\frac{4m^2+6m+12}{10}=\frac{\left(4m^2+6m+\frac{9}{4}\right)+\frac{39}{4}}{10}=\frac{\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}}{10}\)

ta có: \(\left(2m+\frac{3}{2}\right)^2\ge0\Leftrightarrow\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\Leftrightarrow\frac{\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}}{10}\ge\frac{39}{40}\)=> Min M=39/40 <=>m=-3/4

6 tháng 7 2019

\(2x^2-6x+2m-5=0\left(a=2;b=-6;c=2m-5\right)\)

\(\Delta=b'^2-ac=\left(-3\right)^2-2\left(2m-5\right)=19-4m\)

Để PT có hai nghiệm \(\Leftrightarrow\Delta>0\Leftrightarrow19-4m>0\Leftrightarrow m< \frac{19}{4}\)

Vậy với m < 19/4 thì PT có hai nghiệm

Áp dụng hệ thức vi-ét ta có:

\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{6}{2}=3\left(1\right)\\x_1x_2=\frac{c}{a}=\frac{2m-5}{2}\left(2\right)\end{cases}}\)

Theo bài ra ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=6\Rightarrow\frac{x_1+x_2}{x_1x_2}=6\left(3\right)\)

Thay (1) ; (2) vào (3) ta được:

\(\frac{3}{\frac{2m-5}{2}}=6\)

\(\Rightarrow\frac{6\left(2m-5\right)}{2}=3\)

\(\Rightarrow3\left(2m-5\right)=3\)

\(\Rightarrow2m-5=1\Rightarrow m=3\)(TMĐK m<19/4)

30 tháng 4 2018

Δ= 4m^2 - 4m^2 + 4m + 24 = 4m + 24

để pt có 2 nghiệm thì Δ ≥ 0 => 4m + 24 ≥ 0 <=> m ≥ -6

viet: \(\left\{{}\begin{matrix}x1+x2=2m\\x1\cdot x2=m^2-m+6\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\left(x1+x2\right)^2=4m^2\\2x1\cdot x2=2m^2-2m+12\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x1^2+x2^2=4m^2-2x1\cdot x2\\2x1\cdot x2=2m^2-2m+12\end{matrix}\right.\)

|x1| + |x2| = 8

<=> (|x1| + |x2|)^2 = 64

<=> x1^2 + x2^2 + 2|x1|*|x2| = 64

<=> 4m^2 - 2m^2+2m-12 + 2m^2-2m+12 = 64

<=> 4m^2 = 64

<=> m = -4; m = 4

18 tháng 4 2019

a)xét phương trình có: \(\Delta=b^2-4ac=[-\left(2m-3\right)]^2-4\left(m^2-2m+2\right)=4m^2-12m+9-4m^2+8m-8=1-4m\) để phương trình có 2 nghiệm phân biệt thì \(\Delta\)>0 hay 1-4m>0 <=> 4m<1 <=> m<\(\frac{1}{4}\)
Vậy với m<\(\frac{1}{4}\) thì phương trình có 2 nghiệm phân biệt
b) Theo định lí Vi-ét có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=2m-3\\x_1.x_2=\frac{c}{a}=m^2-2m+2\end{matrix}\right.\)
x12 +x22=(x12 +2x1.x2+x22)-2x1.x2=(x1+x2)2-2x1.x2=(2m-3)2-2(m2-2m+2) =4m2-12m+9-2m2+4m-4=2m2-8m+5
Vậy x12+x22=2m2-8m+5

11 tháng 4 2017

GIỜ BÀI NÀY KHÔNG CÒN GIAO LƯU NỮA

(1) (M+1)^2 -2m=m^2 +1 >=0 moi m => (1) được c/m

(2) x1^2 +x^2 =12

=> 4(m+1)^2 -4m =12

m^2+m+1=3 => m=1, -2

=> m

(3) từ  (2)  GTNN A=3/4 khi x=-1/2

có thể sai đừng tin