K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2018

Số đo mỗi góc của ngũ giác đều là 1080.

Ta có tam giác ABC cân tại B

⇒ A 1 ^ = C 1 ^ = ( 180 0 − 108 0 ) : 2 = 36 0 ⇒ E A C ^ = D C A ^     (1)

Chứng minh tương tự ta được:

C 3 ^ = E ^ 1 = 36 0 ⇒ C 2 ^ = 36 0  

Có C 2 ^ = E 1 ^ = 36 0 ⇒ E D / / A C       (2)

Từ (1) và (2), suy ra ACDE là hình thang cân (ĐPCM)

(Các khác: Có thể chứng minh hình thang ACDE có hai đường chéo bằng nhau)

* Chứng minh tương tự ta có J E F ^ = E F G ^ = F G H ^ = G H I ^ = H I J ^ = I J E ^ .

Vậy tứ giác CDEK là hình bình hành

mà CD = DE, suy ra hình bình hành CDEK là hình thoi (ĐPCM)

17 tháng 6 2016

bạn tự vẽ hình nhé :)
a) ABCE là hình thang có 2 cạnh bên song song => AC=BE mà AC=BD => BE=BD => tam giác BDE cân tại B
b) tam giác BDE cân tại B => góc BDC=góc E mà góc ACD=góc E (2 góc đồng vị, AC//BE) => góc BDC= góc ACD
    từ đó, chứng minh đc tg ACD=BDC (c-g-c)
c) tg ACD=BDC => góc ADC=góc BCD (2 góc tương ứng) => đpcm 

11 tháng 7 2019

tg BDE cân tại B:

ta có:ACD=BAC(AB//CD) 
 mà ACD =BEC =>BEC=BAC 

xét tg ABC va tg ECB 
+BC chung 
+ACB=EBC(so le trong) 
+BEC=BAC(cm trên ) 
=>tam giac ABC =tam giac ECB 
=>BDC=BEC 
ma `BEC=ACD(đồng vị)

=>ACD=BDC 
xét tg ACD va tg BDC,ta có : 
+DC chung 
+ACD=BDC 
+AC=BD(gt) 
=>tg ACD = tg BDC 
=>ADC=BCD 
=>ABCD la hình thang cân (đpcm) 

3 tháng 1 2016

      Mình ko vẽ hình đâu nha

   Ta có : Góc MAB = góc ABC ( vì MN // BC)

             Góc NAC = góc ACB ( vì MN // BC )

             Mà góc ABC= góc ACB ( Tam giác ABC cân )

               Nên góc MAB=góc NAC

                 Xét tam giác ABM và tam giác ACN có

          AB=AC ( vì tam giác ABC cân tại A )

          Góc MAB= góc NAC ( cmt)

       MA= NA ( vì A là tđ cuả MN )

     Nên tam giác ABM = ACN

 BCMN có BC// Mn và góc BMA=góc CNA ( 2 góc tương ứng)

  Nên MNCB là hình thang cân

 

3 tháng 1 2016

ko làm đc vì mới học lớp 6

14 tháng 9 2019

Bài 1: Nhường chủ tus và các bạn:D

Bài 2(ko chắc nhưng vẫn làm:v): A B C D O

Do OA = OB(*) nên \(\Delta\)OAB cân tại O nên ^OAB = ^OBA (1)

Mặt khác cho AB // CD nên^OAB = ^OCD; ^OBA = ^ODC (so le trong) (2)

Từ (1) và (2) có ^OCD = ^ODC nên \(\Delta\) ODC cân tại O nên OC = OD (**)

Cộng theo vế (*) và (**) thu được:OA + OC = OB + OD

Hay AC = BD. Do đó hình thang ABCD có 2 đường chéo bằng nhau nên nó là hình thang cân (đpcm)

15 tháng 6 2019

a) Xét tam giác ABC và tam giác BAD, ta có:

AB: cạnh chung

AC=AD (ABCD:hình thang cân)

BC=AD (ABCD: hình thang cân)

  =>Tam giác ABC = tam giác BAD (c-c-c)

  =>\(\widehat{ACB}\)=\(\widehat{BDA}\)(2 góc t/ứng)

  Ta có:

\(\widehat{ACD=}\widehat{ACB}\)+\(\widehat{BCD}\)

BDC^ = BDA^ + ADC^

ACD^ = BDC^ (ABCD: hình thang cân)

ACB^ = BDA^ (cmt)

  =>BCD^ = ADC^

  Ta lại có AB//CD (gt):

  => ABC^ = BCD^ (2 góc sole trong)

       BAD^ = ADC^ (2 góc sole trong)

       BCD^ = ADC^ (cmt)

  => ABC^ = BAD^

  Ta có ME//BC (gt):

  => MEA^ = ABC^ (2 góc sole trong)

  Mà ABC^ = BAD^ (cmt)

  => MEA^ = BAD^

Mặt khác: MAE^ = BAD^ ( 2 góc đối đỉnh)

  => MEA^ = MAE^

  => Tam giác MAE cân tại M.

15 tháng 6 2019

MIK xin lỗi, mik đánh sai đề bài, sửa lại như sau:

a) Tam giác MAE cân

b) AF = DE

Nè bạn!!!!!!!!!!!!!

Sao nãy gửi rồi mà nó không hiện lên nhỉ?????