Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nhé :)
a) ABCE là hình thang có 2 cạnh bên song song => AC=BE mà AC=BD => BE=BD => tam giác BDE cân tại B
b) tam giác BDE cân tại B => góc BDC=góc E mà góc ACD=góc E (2 góc đồng vị, AC//BE) => góc BDC= góc ACD
từ đó, chứng minh đc tg ACD=BDC (c-g-c)
c) tg ACD=BDC => góc ADC=góc BCD (2 góc tương ứng) => đpcm
tg BDE cân tại B:
ta có:ACD=BAC(AB//CD)
mà ACD =BEC =>BEC=BAC
xét tg ABC va tg ECB
+BC chung
+ACB=EBC(so le trong)
+BEC=BAC(cm trên )
=>tam giac ABC =tam giac ECB
=>BDC=BEC
ma `BEC=ACD(đồng vị)
=>ACD=BDC
xét tg ACD va tg BDC,ta có :
+DC chung
+ACD=BDC
+AC=BD(gt)
=>tg ACD = tg BDC
=>ADC=BCD
=>ABCD la hình thang cân (đpcm)
Mình ko vẽ hình đâu nha
Ta có : Góc MAB = góc ABC ( vì MN // BC)
Góc NAC = góc ACB ( vì MN // BC )
Mà góc ABC= góc ACB ( Tam giác ABC cân )
Nên góc MAB=góc NAC
Xét tam giác ABM và tam giác ACN có
AB=AC ( vì tam giác ABC cân tại A )
Góc MAB= góc NAC ( cmt)
MA= NA ( vì A là tđ cuả MN )
Nên tam giác ABM = ACN
BCMN có BC// Mn và góc BMA=góc CNA ( 2 góc tương ứng)
Nên MNCB là hình thang cân
Bài 1: Nhường chủ tus và các bạn:D
Bài 2(ko chắc nhưng vẫn làm:v): A B C D O
Do OA = OB(*) nên \(\Delta\)OAB cân tại O nên ^OAB = ^OBA (1)
Mặt khác cho AB // CD nên^OAB = ^OCD; ^OBA = ^ODC (so le trong) (2)
Từ (1) và (2) có ^OCD = ^ODC nên \(\Delta\) ODC cân tại O nên OC = OD (**)
Cộng theo vế (*) và (**) thu được:OA + OC = OB + OD
Hay AC = BD. Do đó hình thang ABCD có 2 đường chéo bằng nhau nên nó là hình thang cân (đpcm)
a) Xét tam giác ABC và tam giác BAD, ta có:
AB: cạnh chung
AC=AD (ABCD:hình thang cân)
BC=AD (ABCD: hình thang cân)
=>Tam giác ABC = tam giác BAD (c-c-c)
=>\(\widehat{ACB}\)=\(\widehat{BDA}\)(2 góc t/ứng)
Ta có:
\(\widehat{ACD=}\widehat{ACB}\)+\(\widehat{BCD}\)
BDC^ = BDA^ + ADC^
ACD^ = BDC^ (ABCD: hình thang cân)
ACB^ = BDA^ (cmt)
=>BCD^ = ADC^
Ta lại có AB//CD (gt):
=> ABC^ = BCD^ (2 góc sole trong)
BAD^ = ADC^ (2 góc sole trong)
BCD^ = ADC^ (cmt)
=> ABC^ = BAD^
Ta có ME//BC (gt):
=> MEA^ = ABC^ (2 góc sole trong)
Mà ABC^ = BAD^ (cmt)
=> MEA^ = BAD^
Mặt khác: MAE^ = BAD^ ( 2 góc đối đỉnh)
=> MEA^ = MAE^
=> Tam giác MAE cân tại M.
MIK xin lỗi, mik đánh sai đề bài, sửa lại như sau:
a) Tam giác MAE cân
b) AF = DE
Số đo mỗi góc của ngũ giác đều là 1080.
Ta có tam giác ABC cân tại B
⇒ A 1 ^ = C 1 ^ = ( 180 0 − 108 0 ) : 2 = 36 0 ⇒ E A C ^ = D C A ^ (1)
Chứng minh tương tự ta được:
C 3 ^ = E ^ 1 = 36 0 ⇒ C 2 ^ = 36 0
Có C 2 ^ = E 1 ^ = 36 0 ⇒ E D / / A C (2)
Từ (1) và (2), suy ra ACDE là hình thang cân (ĐPCM)
(Các khác: Có thể chứng minh hình thang ACDE có hai đường chéo bằng nhau)
* Chứng minh tương tự ta có J E F ^ = E F G ^ = F G H ^ = G H I ^ = H I J ^ = I J E ^ .
Vậy tứ giác CDEK là hình bình hành
mà CD = DE, suy ra hình bình hành CDEK là hình thoi (ĐPCM)