Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Z_L=100\Omega\)
\(Z_C=40\Omega\)
Theo giả thiết ta có:
\(R_1.R_2=(Z_L-Z_C)^2=60^2\)
\(R_1+R_2=\dfrac{U^2}{P}\)
\(\tan\varphi_1=\dfrac{60}{R_1}\)
\(\tan\varphi_2=\dfrac{60}{R_2}\)
Có: \(\varphi_1=2.\varphi_2\Rightarrow \tan \varphi_1=\tan 2\varphi_2=\dfrac{2\tan\varphi_2}{1-\tan^2\varphi_2}=\dfrac{60}{R_1}\)
\(\Rightarrow \dfrac{2\dfrac{60}{R_2}}{1-(\dfrac{60}{R_2})^2}=\dfrac{60}{R_1}\)
Biến đổi ta tìm đc \(R_2=60\sqrt 3\); \(R_1=20\sqrt 3\)
\(\Rightarrow P=\dfrac{U^2}{R_1+R_2}=60\sqrt 3(W)\)
Áp dụng: Hai dao động điều hòa x1 vuông pha với x2 thì \(\left(\frac{x_1}{x_{1max}}\right)^2+\left(\frac{x_2}{x_{2max}}\right)^2=1\)
Nên: Do uR vuông pha với uL \(\Rightarrow\left(\frac{u_R}{U_{0R}}\right)^2+\left(\frac{u_L}{U_{0L}}\right)^2=1\)
Ở thời điểm t2: \(\left(\frac{0}{U_{0R}}\right)^2+\left(\frac{20}{U_{0L}}\right)^2=1\Rightarrow U_{0L}=20V\) , tương tự: \(U_{0C}=60V\)
Ở thời điểm t1: \(\left(\frac{15}{U_{0R}}\right)^2+\left(\frac{-10\sqrt{3}}{20}\right)^2=1\Rightarrow U_{0R}=30V\)
Vậy: \(U_0=\sqrt{U_{0R}^2+\left(U_{0L}-U_{0C}\right)^2}=\sqrt{30^2+\left(20-60\right)^2}=50V\)
\(\Rightarrow U=\frac{U_0}{\sqrt{2}}=25\sqrt{2}V\)
Em có thể xem thêm lý thuyết và bài tập tự luyện phần điện xoay chiều tại đây: http://edu.olm.vn/on-tap/vat-ly/chuyen-de.52/%C4%90i%E1%BB%87n-xoay-chi%E1%BB%81u
Điểu chỉnh điện dung C của tụ thấy C = C1 và C = C2 thì có cùng giá trị hiệu dụng của tụ điện \(U_{C1} = U_{C2}\).
Khi đó để \(U_{Cmax}\) thì \(C=C_0 = \frac{C_1+C_2}{2}\)
Chọn đáp án.D.
Áp dụng công thức (5.1 và 5.2 - SGK) ta tìm được:
A = 2,3 cm và φ = 0,73π
Phương trình dao động tổng hợp là: x = 2,3cos(5πt + 0,73π) (cm).