Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)
b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)
c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)
Lời giải:
Áp dụng định lý về dấu của tam thức bậc 2
\(f(x)=3x^2-6(2m+1)x+12m+5>0\) với mọi \(x\in \mathbb{R}\)
\(\Leftrightarrow \Delta'=9(2m+1)^2-3(12m+5)<0\)
\(\Leftrightarrow 36m^2-6<0\Leftrightarrow -\sqrt{\frac{1}{6}}< m<\sqrt{\frac{1}{6}}\)
\(f\left(20\right)=f\left(1\right)+f\left(19\right)+3\left(4.1.19-1\right)=f\left(19\right)+12.19-3\)
\(f\left(19\right)=f\left(18\right)+12.18-3\)
\(f\left(18\right)=f\left(17\right)+12.17-3\)
.....
\(f\left(3\right)=f\left(2\right)+12.2-3\)
\(f\left(2\right)=f\left(1\right)+12-3\)
Cộng vế theo vế các đẳng thức trên:
\(f\left(2\right)+f\left(3\right)+...+f\left(20\right)=f\left(1\right)+f\left(2\right)+...+f\left(19\right)+12\left(1+2+...+19\right)-3.20\)
\(\Leftrightarrow f\left(20\right)=2220\)
Đoạn này bạn tính kĩ một chút nha, mình tính không biết có sai không.
\(f\left(x\right)=2\left(x^2-6x+9\right)=2\left(x-3\right)^2\)
\(\Rightarrow f\left(x\right)=0\) khi \(x=3\)
\(f\left(x\right)>0\) khi \(x\ne3\)
Vậy:
1. Là phát biểu sai
2. Là phát biểu đúng
3. Là phát biểu đúng
Ta có \(\dfrac{1}{\sqrt{3x+1}}=\dfrac{f'\left(x\right)}{f\left(x\right)}\)
\(\Rightarrow\int\dfrac{1}{\sqrt{3x+1}}dx=\int\dfrac{f'\left(x\right)}{f\left(x\right)}dx\)
\(\Rightarrow\dfrac{1}{3}\int\left(3x+1\right)^{-\dfrac{1}{2}}d\left(3x+1\right)=\int\dfrac{\left[f\left(x\right)\right]}{f\left(x\right)}\)
\(\Rightarrow\dfrac{2}{3}.\sqrt{3x+1}+C=\ln\left|f\left(x\right)\right|=\ln\left|f\left(x\right)\right|\)
\(\Rightarrow f\left(x\right)=e^{\dfrac{2}{3}.\sqrt{3x+1}+C}\)
Mặt khác ta có f(1) = \(e^{\dfrac{4}{3}+C}=1\Rightarrow C=-\dfrac{4}{3}\)
Vậy nên f(x) = \(e^{\dfrac{2}{3}.\sqrt{3x+1}-\dfrac{4}{3}}\)
Từ đó ta tính được f(5) = \(e^{\dfrac{4}{3}}\)