Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, BPT đúng với mọi x thuộc R khi vầ chỉ khi:
\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\1-4a^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\le\frac{-1}{2};a\ge\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow a\ge\frac{1}{2}\)
2, điều kiện: \(\Delta< 0\\ \Leftrightarrow\left(m+2\right)^2+8\left(m-4\right)< 0\\ \Leftrightarrow m^2+12m-28< 0\\ \Leftrightarrow-14< m< 2\)
3, điều kiện: \(\Delta'< 0\\ \Leftrightarrow\left(2m-3\right)^2-\left(4m-3\right)< 0\\ \Leftrightarrow m^2-4m+3< 0\\ \Leftrightarrow1< m< 3\)
4, Nếu m=0 => f(x)=-2x-1<0 (loại)
Nếu m≠0 để f(x)<0 với ∀x ϵ R khi và chỉ khi:
\(\left\{{}\begin{matrix}m< 0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\1+m< 0\end{matrix}\right.\)
\(\Rightarrow m< -1\)
Lời giải:
Áp dụng định lý về dấu của tam thức bậc 2
\(f(x)=3x^2-6(2m+1)x+12m+5>0\) với mọi \(x\in \mathbb{R}\)
\(\Leftrightarrow \Delta'=9(2m+1)^2-3(12m+5)<0\)
\(\Leftrightarrow 36m^2-6<0\Leftrightarrow -\sqrt{\frac{1}{6}}< m<\sqrt{\frac{1}{6}}\)
\(f(x)=x^2+2mx+m+6\)
Để $f(x) >0 \forall x \in \mathbb{R}$ thì \(\left\{{}\begin{matrix}1>0\\\Delta'< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\in R\\m^2-\left(m+6\right)< 0\end{matrix}\right.\)\(\Leftrightarrow m^2-m-6< 0\Leftrightarrow-2< m< 3\)
KL: ....................
\(f\left(x\right)=-x^2-2x-m\)
\(f\left(x\right)\le0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\)
Xét \(\Delta\le0\)
\(\Delta=\left(-2\right)^2-4.\left(-1\right).\left(-m\right)\)
\(=4-4m\le0\Rightarrow m\ge1\)
Vậy với m\(\ge1\)thì f(x)\(\le0,\forall x\in R\)
\(f(x)>0 \leftrightarrow 2x-m > 0 \leftrightarrow x> \frac{m}{2} để f(x) >0 với mọi x >1 thì \frac{m}{2} \le 1 \leftrightarrow m \le 2\)
Do \(a=1>0\) nên để \(f\left(x\right)>0\) \(\forall x\)
\(\Leftrightarrow\Delta'< 0\)
\(\Leftrightarrow\left(4m-1\right)^2-\left(15m^2-2m-7\right)< 0\)
\(\Leftrightarrow m^2-6m+8< 0\)
\(\Leftrightarrow2< m< 4\)
\(f\left(x\right)=2\left(x^2-6x+9\right)=2\left(x-3\right)^2\)
\(\Rightarrow f\left(x\right)=0\) khi \(x=3\)
\(f\left(x\right)>0\) khi \(x\ne3\)
Vậy:
1. Là phát biểu sai
2. Là phát biểu đúng
3. Là phát biểu đúng