K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2017

Với  x ≥ 0 , x ≠ 25  Ta có:  A = B . x − 4

⇔ x + 2 x − 5 = 1 x − 5 . x − 4 ⇔ x + 2 = x − 4 ( * )

Nếu  x ≥ 4 ,   x ≠ 25  thì (*) trở thành : x + 2 = x − 4

⇔ x − x − 6 = 0 ⇔ x − 3 x + 2 = 0

Do  x + 2 > 0  nên  x = 3 ⇔ x =   9  (thỏa mãn)

Nếu  0 ≤ x < 4  thì (*) trở thành : x + 2 = 4 − x

⇔ x + x − 2 = 0 ⇔ x − 1 x + 2 = 0

Do  x + 2 > 0  nên  x = 1 ⇔ x = 1  (thỏa mãn)

Vậy có hai giá trị x=1 và x= 9 thỏa mãn yêu cầu bài toán

13 tháng 7 2018

\(x=9\Rightarrow\sqrt{x}=3\Rightarrow A=\frac{3+2}{3-5}=\frac{5}{-2}=-\frac{5}{2}\\ \)

\(B=\frac{3}{\sqrt{x}+5}+\frac{20-2\sqrt{x}}{x-25}=\frac{3.\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right).\left(\sqrt{x}-5\right)}+\frac{20-2\sqrt{x}}{\left(x+\sqrt{5}\right).\left(x-\sqrt{5}\right)}\)

\(=\frac{3\sqrt{x}-15+20-2\sqrt{x}}{\left(\sqrt{x}+5\right).\left(\sqrt{x}-5\right)}=\frac{\sqrt{x}+5}{\left(\sqrt{x}+5\right).\left(\sqrt{x}-5\right)}=\frac{1}{\sqrt{x}-5}\)

\(A=B.\left|x-4\right|\Leftrightarrow\left|x-4\right|=A:B=\frac{\sqrt{x}+2}{\sqrt{x}-5}:\frac{1}{\sqrt{x}-5}=\sqrt{x}+2\)

\(\Rightarrow\left(x-4\right)^2=\left(\sqrt{x}+2\right)^2\Leftrightarrow x^2-8x+16=x+4\sqrt{x}+4\)

\(\Leftrightarrow x^2-9x-4\sqrt{x}+12=0\Leftrightarrow x.\left(x-9\right)-4.\left(\sqrt{x}-3\right)=0\)

\(\Leftrightarrow x.\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)-4.\left(\sqrt{x}-3\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-3\right).\left(x\sqrt{x}+3x-4\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-3\right).\left(\left(x\sqrt{x}-x\right)+\left(4x-4\right)\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-3\right).\left(x.\left(\sqrt{x}-1\right)+4.\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-3\right).\left(\sqrt{x}-1\right).\left(x+4\sqrt{x}+4\right)=0\Leftrightarrow\left(\sqrt{x}-3\right).\left(\sqrt{x}-1\right).\left(\sqrt{x}+2\right)^2=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}-3=0\\\sqrt{x}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=9\\x=1\end{cases}}}\)(Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\left(\sqrt{x}+2\right)^2\ge4>0\))

6 tháng 1 2022

a) \(\frac{\sqrt{11}}{2}\)

b)ko bt

TL:

\(A=\frac{\sqrt{x+2}}{\sqrt{x-5}}\) mà x = 9

\(A=\frac{\sqrt{0+2}}{\sqrt{9-2}}\)

\(A=\frac{\sqrt{11}}{2}\)

b) chưa bt làm

4 tháng 8 2018

a/ khi x = 9 thì A = \(\dfrac{\sqrt{9}+2}{\sqrt{9}-5}=\dfrac{5}{-2}=-\dfrac{5}{2}\)

b/ B = \(\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{x-25}=\dfrac{3\left(\sqrt{x}-5\right)+20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\dfrac{3\sqrt{x}-15+20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\dfrac{1}{\sqrt{x}-5}\left(đpcm\right)\)

c/ \(A=B\cdot\left|x-4\right|\)

\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-5}=\dfrac{1}{\sqrt{x}-5}\cdot\left|x-4\right|\)

\(\Leftrightarrow\left|x-4\right|=\dfrac{\sqrt{x}+2}{\sqrt{x}-5}:\dfrac{1}{\sqrt{x}-5}=\sqrt{x}+2\)

Vì: \(\sqrt{x}+2>0\)=> đk: x > 4

\(\left|x-4\right|=\sqrt{x}+2\)

\(\Leftrightarrow x-4=\sqrt{x}+2\)

\(\Leftrightarrow x-\sqrt{x}-6=0\)

\(\Leftrightarrow\left(x-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{25}{4}=0\)

\(\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2=\dfrac{25}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-\dfrac{1}{2}=\dfrac{5}{2}\\\sqrt{x}-\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=-2\left(loai\right)\end{matrix}\right.\)

\(\sqrt{x}=3\Leftrightarrow x=9\left(TM\right)\)

Vậy x = 9 thì A = B.|x - 4|

1 tháng 3 2020

a) Đkxđ: \(x\ne4\)

                    

Thay x=9 vào A ta được:

\(\frac{9+3}{\sqrt{9}-2}=\frac{12}{3-2}=12\)

b)Ta có \(B=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)

                \(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

                \(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

                \(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x}-2}\)

\(\Rightarrow B=\frac{\sqrt{x}}{\sqrt{x}-2}\)

c) TA có \(\frac{4B}{A}=\frac{4\sqrt{x}}{\sqrt{x}-2}:\frac{x+3}{\sqrt{x}-2}=\frac{\left(4\sqrt{x}\right).\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(x+3\right)}\)

                       \(=\frac{4\sqrt{x}}{x+3}\)

Để \(\frac{4B}{A}=\frac{4\sqrt{x}}{x+3}\in Z\)thì \(x+3\inƯ\left(4\right);x=a^2\left(a\in Z\right)\)

Với \(x+3\inƯ\left(4\right)\Rightarrow x\in\left\{-5;-4;-2;\pm1;7\right\}\)mà \(x=a^2\Rightarrow x=1\left(TM\right)\)

Vậy x=1

Hok tốt!

13 tháng 7 2016

a/ \(A=\frac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

         \(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

            \(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x}-2}\)

b/ Thay x = 25 vào A ta được:

      \(A=\frac{\sqrt{25}}{\sqrt{25}-2}=\frac{5}{5-2}=\frac{5}{3}\)

c/ A = -1/3 \(\Rightarrow\frac{\sqrt{x}}{\sqrt{x}-2}=-\frac{1}{3}\Rightarrow2-\sqrt{x}=3\sqrt{x}\)

                   \(\Rightarrow4\sqrt{x}=2\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)

                                                                   Vậy x = 1/4

5 tháng 2 2021

học lớp 9 chưa mà đòi đăng ? :))

a) Ta có : \(A=\frac{x+5\sqrt{x}}{x-25}=\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\sqrt{x}}{\sqrt{x}-5}\)

Để A nhận giá trị = 0 thì \(\sqrt{x}=0\)<=> x = 0 ( tmđk )

Vậy với x = 0 thì A = 0

b) \(B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{x-9}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}}{\sqrt{x}+3}\)

c) P = B : A = \(\frac{\frac{\sqrt{x}}{\sqrt{x}+3}}{\frac{\sqrt{x}}{\sqrt{x}-5}}=\frac{\sqrt{x}}{\sqrt{x}+3}\div\frac{\sqrt{x}}{\sqrt{x}-5}=\frac{\sqrt{x}}{\sqrt{x}+3}\times\frac{\sqrt{x}-5}{\sqrt{x}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)

Xét hiệu P - 1 ta có :

\(\frac{\sqrt{x}-5}{\sqrt{x}+3}-1=\frac{\sqrt{x}-5}{\sqrt{x}+3}-\frac{\sqrt{x}+3}{\sqrt{x}+3}=\frac{\sqrt{x}-5-\sqrt{x}-3}{\sqrt{x}+3}=\frac{-8}{\sqrt{x}+3}\)

Vì \(\hept{\begin{cases}-8< 0\\\sqrt{x}+3>0\end{cases}}\Rightarrow\frac{-8}{\sqrt{x}+3}< 0\)hay P - 1 < 0

=> P < 1 

DD
5 tháng 2 2021

a) \(A=0\Rightarrow\frac{x+5\sqrt{x}}{x-25}=0\Rightarrow x+5\sqrt{x}=0\Leftrightarrow x=0\)(thỏa mãn).

b) \(B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{x-9}\)

\(B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(B=\frac{2\sqrt{x}\left(\sqrt{x}+3\right)-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(B=\frac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(B=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{\sqrt{x}}{\sqrt{x}+3}\)

c) \(P=B\div A=\frac{\sqrt{x}}{\sqrt{x}+3}\div\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\sqrt{x}-5}{\sqrt{x}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}< 1\)

4 tháng 8 2020

a/ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne25\end{matrix}\right.\)

Thay \(x=9\) vào biểu thức ta có :

\(A=\frac{\sqrt{9}+2}{\sqrt{9}-5}=\frac{3+2}{3-5}=-\frac{5}{2}\)

Vậy....

b/ Ta có :

\(B=\frac{3}{\sqrt{x}+5}+\frac{20-2\sqrt{x}}{x-25}\)

\(=\frac{3}{\sqrt{x}+5}+\frac{20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\frac{3\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-5\right)}+\frac{20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\frac{3\sqrt{x}-15+20-2\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=\frac{\sqrt{x}+5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=\frac{1}{\sqrt{x}-5}\)

Vậy...

c/ Ta có :

\(A=B.\left|x-4\right|\)

\(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{1}{\sqrt{x}-5}\left|x-4\right|\)

\(\Leftrightarrow\sqrt{x}+2=\left|x-4\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+2=x-4\\\sqrt{x}+2=4-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{x}-6=0\\x+\sqrt{x}-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)=0\\\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)

Vậy...