K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

Đáp án C

Phương trình hoành độ giao điểm của (C) và d là:

tDNn5nbwTQyD.png (*)

uQ7vtqvFUsRi.png 

(C) cắt d tại hai điểm phân biệt yRm2sybXIfQE.png có hai nghiệm phân biệt x1, x2

 

Gọi 3xabvYbDsLP9.pngTDDKdzJHaIjt.png là các giao điểm của (C) và d với sNDQ0bF0CRAp.png 

Khi đó

 

 

Ngoài ra, ta có thể kiểm tra sau khi có 5vNIaOwSoDgr.png Khi đó, ta loại các phương án m = 1; m = 5

Thử một phương án m = -2, ta được phương trình:

 

21 tháng 4 2016

Phương trình hoành độ giao điểm của đồ thị và đường thẳng là \(-x+m=\frac{x^2-1}{x}\)

                                                                 \(\Leftrightarrow2x^2-mx-1=0\) (*) (vì x = 0 không là nghiệm của (*))

Vì ac < 0 nên phương trình (*) luôn có 2 nghiệm phân biệt khác không 

Do đó đồ thị và đường thẳng luôn cắt nhau tại hai điểm phân biệt :

\(A\left(x_1;-x_1+m\right);B\left(x_2;-x_2+m\right)\)

\(AB=4\Leftrightarrow\sqrt{\left(x_2-x_1\right)^2+\left(-x_2+m+x_1+m\right)^2}=4\)

             \(\Leftrightarrow2\left(x_2-x_1\right)^2=16\)

             \(\Leftrightarrow\left(x_2+x_1\right)^2-4x_2x_1=8\)

Áp ụng định lý Viet ta có : \(\begin{cases}x_2+x_1=\frac{m}{2}\\x_2x_1=-\frac{1}{2}\end{cases}\)

\(AB=4\Leftrightarrow\frac{m^2}{4}+2=8\Leftrightarrow m=\pm2\sqrt{6}\)

Vậy \(m=\pm2\sqrt{6}\) là giá trị cần tìm

29 tháng 8 2019

tại sao lại ra chỗ \(2\left(x_2-x_1\right)^2=16\) vậy bạn.chỉ hộ mình với

21 tháng 4 2016

Hoành độ giao điểm của d : y = mx+2 với (C) là nghiệm phương trình :

\(\begin{cases}x>0\\\log^2_2x-\log_2x^2-3\ge0\end{cases}\)
Dễ thấy với m = 0 thì (1) vô nghiệm. Đường thẳng d cắt (C) tại hai điểm phân biệt khi và chỉ khi (1) có 2 nghiệm phân biệt khác -1. Điều kiện là 

\(\begin{cases}\Delta>0\\m\left(-1\right)^2+m\left(-1\right)+3\ne0\end{cases}\) \(\Leftrightarrow m^2-12m>0\) \(\Leftrightarrow m<0\) hoặc m > 12 (*)

Với (*) giả sử x1, x2 là 2 nghiệm phân biệt của (1), khi đó tọa độ các giao điểm là : 

\(A\left(x_1;mx_1+2\right);B\left(x_2;mx_2+2\right)\)

Dễ thất điểm O không thuộc d nên ABO là một tam giác.

Tam giác ABO vuông tại O khi và chỉ khi :

\(\overrightarrow{OA}.\overrightarrow{OB}=0\Leftrightarrow\left(1+m^2\right)x_1x_2+2m\left(x_1+x_2\right)+4=0\)

Áp dụng định lí Viet ta có : \(x_1+x_2=-1;x_1x_2=\frac{3}{m}\)

Thay vào trên ta được :

\(m^2+4m+3=0\Leftrightarrow m=-3\) hoặc \(m=-1\) (thỏa mãn (*)

Vậy \(m=-3\) hoặc \(m=-1\)

14 tháng 4 2016

\(\frac{x+2}{x+1}=x+m\Leftrightarrow\begin{cases}x\ne-1\\x^2+mx+m-2=0\left(1\right)\end{cases}\)

Phương trình (1) có \(\Delta=m^2-4\left(m-2\right)=m^2-4m+8>0\), mọi m và \(\left(-1\right)^2-m+m-2\ne0\)

nên d luôn cắt (C) tại 2 điểm phân biệt \(A\left(x_1;x_1+m\right);B\left(x_2;x_2+m\right)\)

Ta có \(OA=\sqrt{2x_1^2+2mx_1+m^2}=\sqrt{2\left(x_1^2+mx_1+m-2\right)+m^2-2m+4}=\sqrt{m^2-2m+4}\)

Tương tự \(OB=\sqrt{m^2-2m+4}\)

yêu cầu bài toán \(\Leftrightarrow\begin{cases}\frac{2}{\sqrt{m^2-2m+4}}=1\\O\notin AB\end{cases}\) \(\Leftrightarrow\begin{cases}m^2-2m+4=4\\m\ne0\end{cases}\)\(\Leftrightarrow m=2\)

6 tháng 4 2016

Xét phương trình hoành độ giao điểm của đồ thị (C) và d :

\(\frac{2x+3}{x+2}=-2x+m\)\(\Leftrightarrow\begin{cases}x\ne-2\\2x^2+\left(6-m\right)x+3-2m=0\end{cases}\) (*)

Xét phương trình (*), ta có \(\Delta>0\), mọi \(m\in R\) và x=-2 không là nghiệm của (*) nên d luôn cắt đồ thị (C) tại 2 điểm phân biệt A, B với mọi m

Hệ số góc của tiếp tuyến tại A, tại B lần lượt là :

\(k_1=\frac{1}{\left(x_1+1\right)^2};k_2=\frac{1}{\left(x_2+1\right)^2}\) trong đó \(x_1,x_2\) là 2 nghiệm của phương trình (*)

Ta thấy :

\(k_1.k_2=\frac{1}{\left(x_1+1\right)^2.\left(x_2+1\right)^2}=\frac{1}{\left(x_1x_2+2x_1+2x_2+4\right)^2}=4\)  (\(k_1>0;k_2>0\) )

Có \(P=\left(k_1\right)^{2014}+\left(k_2\right)^{2014}\ge2\sqrt{\left(k_1k_2\right)^{2014}}=2^{2015}\)

Do đó , Min \(P=2^{2015}\) đạt được khi và chỉ khi \(k_1=k_2\)

\(\Leftrightarrow\frac{1}{\left(x_1+2\right)^2}=\frac{1}{\left(x_2+2\right)^2}\Leftrightarrow\left(x_1+2\right)^2=\left(x_2+2\right)^2\)

Do \(x_1,x_2\) phân biệt nên ta có \(x_1+2=-x_2-2\)

\(\Leftrightarrow x_1+x_2=-4\Leftrightarrow m=-2\)

Vậy giá trị cần tìm là \(m=-2\)

21 tháng 4 2016

Hoành độ giao điểm của đường thẳng  y = m và (C) là nghiệm của phương trình :

\(x^4-2x^2=m\Leftrightarrow x^4-2x^2-m=0\) (*)

Đặt \(t=x^2,t\ge0\), phương trình (*) trở thành : \(t^2-2t-m=0\) (**)

Đường thẳng y = m và (C) cắt nhau tại 4 điểm phân biệt \(\Leftrightarrow\) phương trình (*) có 4 nghiệm phân biệt;  \(\Leftrightarrow\) có 2 nghiệm phân biệt

\(t2 > t1 > 0\)\(\Leftrightarrow\begin{cases}\Delta'>0\\S>0\\P>0\end{cases}\) \(\Leftrightarrow\begin{cases}1+m>0\\2>0\\-m>0\end{cases}\) \(\Leftrightarrow\) \(-1 < m < 0\)

Khi đó phương trình (*) có 4 nghiệm là 

\(x_1=-\sqrt{t_2};x_2=-\sqrt{t_1};x_3=\sqrt{t_1};x_4=\sqrt{t_2};\)

\(\Rightarrow x_1=-x_4;x_2=-x_3\)

Ta có \(y'=4x^3-4x\) do đó tổng các hệ số của tiếp tuyến tại cá điểm E, F, M, N là 

\(k_1+k_2+k_3+k_4=\left(4x_1^3-4x_1\right)+\left(4x_2^3-4x_2\right)+\left(4x_3^3-4x_3\right)+\left(4x_4^3-4x_4\right)\)

                           \(=4\left(x_1^3+x^3_4\right)+4\left(x_2^3+x^3_3\right)-4\left(x_1+x_4\right)-4\left(x_2+x_3\right)=0\)

18 tháng 4 2016

Phương trình có hoành độ giao điểm \(\frac{-x+m}{x+2}=-x+\frac{1}{2}\Leftrightarrow\begin{cases}x\ne-2\\2x^2+x+2m-2=0\left(1\right)\end{cases}\)

Đường thẳng (d) cắt \(\left(C_m\right)\) tại 2 điểm A, B <=> (1) có 2 nghiệm phân biệt \(x\ne-2\)

\(\Leftrightarrow\begin{cases}\Delta=1-8\left(2m-2\right)>0\\2\left(-2\right)^2+\left(-2\right)+2m-2\ne0\end{cases}\)\(\Leftrightarrow\begin{cases}17-16m>0\\m\ne-2\end{cases}\)\(\Leftrightarrow\begin{cases}m<\frac{17}{16}\\m\ne-2\end{cases}\)

\(A\left(x_1;-x_1+\frac{1}{2}\right);B\left(x_2;-x_2+\frac{1}{2}\right);\) trong đó x1, x2 là 2 nghiệm phân biệt của phương trình (1)

Theo Viet ta có \(\begin{cases}x_1+x_2=-\frac{1}{2}\\x_1x_2=m-1\end{cases}\)

\(AB=\sqrt{\left(x_2-x_1\right)^2+\left(x_1-x_2\right)^2}=\sqrt{2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]}=\frac{\sqrt{2\left(17-16m\right)}}{2}\)

\(d\left(O,d\right)=\frac{1}{2\sqrt{2}};S_{\Delta OAB}=\frac{1}{2}AB.d\left(O,d\right)=\frac{1}{2}.\frac{1}{2\sqrt{2}}.\frac{\sqrt{2\left(17-16m\right)}}{2}=1\)

\(\Leftrightarrow m=\frac{-47}{16}\)

Vậy \(m=\frac{-47}{16}\)

14 tháng 7 2016

Khoảng cách từ O đến d tính ntn v bn? @Hoàng Thị Tâm

AH
Akai Haruma
Giáo viên
13 tháng 12 2016

a) Hàm có cực đại, cực tiểu khi mà $y'=-3x^2+2(m-1)x=x[2(m-1)-3x]$ có ít nhất hai nghiệm phân biệt $\Leftrightarrow 2(m-1)-3x=0$ có một nghiệm khác $0$ hay $m\neq 1$

b) Đồ thị hàm số $(\star)$ cắt trục hoành tại ba điểm phân biệt khi mà phương trình $y=-x^3+(m-1)x^2-m+2=0$ có $3$ nghiệm phân biệt

$\Leftrightarrow (1-x)[x^2+x(2-m)+(2-m)]=0$ có ba nghiệm phân biệt

$\Leftrightarrow x^2+x(2-m)+(2-m)=0$ có hai nghiệm phân biệt khác $1$

Do đó ta cần có $\left\{\begin{matrix}1+2-m+2-m=5-2m\neq 0\\ \Delta =(2-m)^2-4(2-m)>0\end{matrix}\right.$

Vậy để thỏa mãn đề bài thì $m\neq \frac{5}{2}$ và $m>2$ hoặc $m<-2$

c) Gọi điểm cố định mà đồ thị hàm số đi qua là $(x_0,y_0)$

$y_0=-x_0^3+(m-1)x_0^2-m+2$ $\forall m\in\mathbb{R}$

$\Leftrightarrow m(x_0^2-1)-(x_0^3+x_0^2+y_0-2)=0$ $\forall m\in\mathbb{R}$

$\Rightarrow\left{\begin{matrix}x_0^2=1\\ x_0^3+x_0^2+y_02=0\end{matrix}\right.\begin{bmatrix}(x_0,y_0)=(1;0)\\ (x_0,y_0)=(-1;2)\end{bmatrix}$

 

AH
Akai Haruma
Giáo viên
13 tháng 12 2016

Viết lại đoạn cuối:

$\Rightarrow\left{\begin{matrix}x_0^2=1\\x_0^3+x_0^2+y_0-2=0\end{matrix}\right.$ $\Rightarrow \begin{bmatrix}(x_0,y_0)=(1;0)\\ (x_0,y_0)=(-1;2)\end{bmatrix}$

18 tháng 10 2022

Chọn B

31 tháng 3 2017

a) Điểm (-1 ; 1) thuộc đồ thị của hàm số ⇔ .

b) m = 1 . Tập xác định : R.

y' = 0 ⇔ x = 0.

Bảng biến thiên:

Đồ thị như hình bên.

c) Vậy hai điểm thuộc (C) có tung độ là A(1 ; ) và B(-1 ; ). Ta có y'(-1) = -2, y'(1) = 2.

Phương trình tiếp tuyến với (C) tại A là : y - = y'(1)(x - 1) ⇔ y = 2x -

Phương trình tiếp tuyến với (C) tại B là : y - = y'(-1)(x + 1) ⇔ y = -2x - .