K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

Xét phương trình hoành độ giao điểm của đồ thị (C) và d :

\(\frac{2x+3}{x+2}=-2x+m\)\(\Leftrightarrow\begin{cases}x\ne-2\\2x^2+\left(6-m\right)x+3-2m=0\end{cases}\) (*)

Xét phương trình (*), ta có \(\Delta>0\), mọi \(m\in R\) và x=-2 không là nghiệm của (*) nên d luôn cắt đồ thị (C) tại 2 điểm phân biệt A, B với mọi m

Hệ số góc của tiếp tuyến tại A, tại B lần lượt là :

\(k_1=\frac{1}{\left(x_1+1\right)^2};k_2=\frac{1}{\left(x_2+1\right)^2}\) trong đó \(x_1,x_2\) là 2 nghiệm của phương trình (*)

Ta thấy :

\(k_1.k_2=\frac{1}{\left(x_1+1\right)^2.\left(x_2+1\right)^2}=\frac{1}{\left(x_1x_2+2x_1+2x_2+4\right)^2}=4\)  (\(k_1>0;k_2>0\) )

Có \(P=\left(k_1\right)^{2014}+\left(k_2\right)^{2014}\ge2\sqrt{\left(k_1k_2\right)^{2014}}=2^{2015}\)

Do đó , Min \(P=2^{2015}\) đạt được khi và chỉ khi \(k_1=k_2\)

\(\Leftrightarrow\frac{1}{\left(x_1+2\right)^2}=\frac{1}{\left(x_2+2\right)^2}\Leftrightarrow\left(x_1+2\right)^2=\left(x_2+2\right)^2\)

Do \(x_1,x_2\) phân biệt nên ta có \(x_1+2=-x_2-2\)

\(\Leftrightarrow x_1+x_2=-4\Leftrightarrow m=-2\)

Vậy giá trị cần tìm là \(m=-2\)

21 tháng 4 2016

Hoành độ giao điểm của đường thẳng  y = m và (C) là nghiệm của phương trình :

\(x^4-2x^2=m\Leftrightarrow x^4-2x^2-m=0\) (*)

Đặt \(t=x^2,t\ge0\), phương trình (*) trở thành : \(t^2-2t-m=0\) (**)

Đường thẳng y = m và (C) cắt nhau tại 4 điểm phân biệt \(\Leftrightarrow\) phương trình (*) có 4 nghiệm phân biệt;  \(\Leftrightarrow\) có 2 nghiệm phân biệt

\(t2 > t1 > 0\)\(\Leftrightarrow\begin{cases}\Delta'>0\\S>0\\P>0\end{cases}\) \(\Leftrightarrow\begin{cases}1+m>0\\2>0\\-m>0\end{cases}\) \(\Leftrightarrow\) \(-1 < m < 0\)

Khi đó phương trình (*) có 4 nghiệm là 

\(x_1=-\sqrt{t_2};x_2=-\sqrt{t_1};x_3=\sqrt{t_1};x_4=\sqrt{t_2};\)

\(\Rightarrow x_1=-x_4;x_2=-x_3\)

Ta có \(y'=4x^3-4x\) do đó tổng các hệ số của tiếp tuyến tại cá điểm E, F, M, N là 

\(k_1+k_2+k_3+k_4=\left(4x_1^3-4x_1\right)+\left(4x_2^3-4x_2\right)+\left(4x_3^3-4x_3\right)+\left(4x_4^3-4x_4\right)\)

                           \(=4\left(x_1^3+x^3_4\right)+4\left(x_2^3+x^3_3\right)-4\left(x_1+x_4\right)-4\left(x_2+x_3\right)=0\)

7 tháng 5 2019

- Phương trình hoành độ giao điểm của d và (C)  là

Theo định lí Viet ta có x1+x2=-m; 

Giả sử A( x1; y1); B( x2; y2).

Ta có nên tiếp tuyến của (C)  tại A và B có hệ số góc lần lượt là và  .Vậy

 

Dấu "=" xảy ra  khi và chỉ khi m= -1.

Vậy k1+ k2  đạt giá trị lớn nhất bằng -2 khi m= -1.

Chọn A.

 

9 tháng 11 2017

+ Phương trình hoành độ giao điểm của d  và (C)  là

+ Theo định lí Viet ta có  x1+ x2= -m ; x1.x2= ( -m-1) /2.

 Gọi A( x1; y1) ; B( x2: y 2)  .

+ Ta có y ' = - 1 ( 2 x - 1 ) 2  , nên tiếp tuyến của ( C)  tại A và B  có hệ số góc lần lượt là

 

k 1 = - 1 ( 2 x 1 - 1 ) 2 ;   k 2 = - 1 ( 2 x 2 - 1 ) 2

Dấu "=" xảy ra khi và chỉ khi m= -1.

Vậy k1+ k2 đạt giá trị lớn nhất bằng - 2 khi m= -1.

Chọn B.

29 tháng 4 2016

a. Tiếp tuyến của \(\left(C_m\right)\) tại điểm có hoành độ x = 1 có phương trình :

\(y=\left(m-2\right)\left(x-1\right)+3m-2=\left(m-2\right)x+3m\)

Yêu cầu của bài toán khi và chỉ khi \(\begin{cases}m-2=3\\2m\ne10\end{cases}\) vô nghiệm

Vậy không tồn tại m thỏa mãn yêu cầu bài toán

b. Ta có \(y'=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+m-\frac{7}{3}=3\left(x-\frac{2}{3}\right)^2+m-\frac{7}{3}\)

Suy ra \(y'\ge m-\frac{7}{3}\)

Tiếp tuyến tại điểm có hoành độ \(x=\frac{2}{3}\) có hệ số góc nhỏ nhất và hệ số góc có giá trị \(k=m-\frac{7}{3}\)

Yêu cầu bài toán \(\Leftrightarrow k.2=-1\Leftrightarrow\left(m-\frac{7}{3}\right).2=-1\Leftrightarrow m=\frac{11}{6}\)

18 tháng 4 2016

Phương trình có hoành độ giao điểm \(\frac{-x+m}{x+2}=-x+\frac{1}{2}\Leftrightarrow\begin{cases}x\ne-2\\2x^2+x+2m-2=0\left(1\right)\end{cases}\)

Đường thẳng (d) cắt \(\left(C_m\right)\) tại 2 điểm A, B <=> (1) có 2 nghiệm phân biệt \(x\ne-2\)

\(\Leftrightarrow\begin{cases}\Delta=1-8\left(2m-2\right)>0\\2\left(-2\right)^2+\left(-2\right)+2m-2\ne0\end{cases}\)\(\Leftrightarrow\begin{cases}17-16m>0\\m\ne-2\end{cases}\)\(\Leftrightarrow\begin{cases}m<\frac{17}{16}\\m\ne-2\end{cases}\)

\(A\left(x_1;-x_1+\frac{1}{2}\right);B\left(x_2;-x_2+\frac{1}{2}\right);\) trong đó x1, x2 là 2 nghiệm phân biệt của phương trình (1)

Theo Viet ta có \(\begin{cases}x_1+x_2=-\frac{1}{2}\\x_1x_2=m-1\end{cases}\)

\(AB=\sqrt{\left(x_2-x_1\right)^2+\left(x_1-x_2\right)^2}=\sqrt{2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]}=\frac{\sqrt{2\left(17-16m\right)}}{2}\)

\(d\left(O,d\right)=\frac{1}{2\sqrt{2}};S_{\Delta OAB}=\frac{1}{2}AB.d\left(O,d\right)=\frac{1}{2}.\frac{1}{2\sqrt{2}}.\frac{\sqrt{2\left(17-16m\right)}}{2}=1\)

\(\Leftrightarrow m=\frac{-47}{16}\)

Vậy \(m=\frac{-47}{16}\)

14 tháng 7 2016

Khoảng cách từ O đến d tính ntn v bn? @Hoàng Thị Tâm

27 tháng 4 2016

Ta có \(\overrightarrow{n}=\left(2;1\right)\) là vecto pháp tuyến của đường thẳng d

\(y'=3x^2-2\left(m+2\right)x+m-1\Rightarrow y'\left(1\right)=3-2m-4+m-1=-m-2\)

Gọi \(\Delta\) là tiếp tuyến của đồ thị hàm số (1) tại điểm có hoành độ bằng 1. Suy ra phương trình của  \(\Delta\) có dạng \(y=y'\left(1\right)\left(x-1\right)+y\left(1\right)\)

Do đó \(\overrightarrow{n}=\left(m+2;1\right)\) là vecto pháp tuyến của  \(\Delta\)

Theo đề bài ta có : \(\left|\cos\left(\overrightarrow{n_1.}\overrightarrow{n_2}\right)\right|=\cos30^0\Rightarrow\frac{\left|\overrightarrow{n_1.}\overrightarrow{n_2}\right|}{\left|\overrightarrow{n_1}\right|\left|\overrightarrow{n_2}\right|}=\frac{\sqrt{3}}{2}\)

                         \(\Leftrightarrow\frac{\left|2\left(m+2\right)+1\right|}{\sqrt{5}\sqrt{\left(m+2\right)^2+1}}=\frac{\sqrt{3}}{2}\)

                         \(\Leftrightarrow m^2+20m+25=0\)

                         \(\Leftrightarrow m=-10\pm5\sqrt{3}\)

 
 
3 tháng 5 2016

a) (C) có 2 tiệm cận xiên là x = -1 và y = x + 1

I là tâm đối xứng \(\Rightarrow I\left(-1;0\right)\) (I là giao của 2 tiệm cận)

Xét \(M\left(x_0;f\left(x_0\right)\right)\in\left(C\right)\). Tiếp tuyến \(\Delta\) tại M của (C) :

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=\frac{x_0^2+2x_0}{\left(x_0+1\right)^2}\left(x-x_0\right)+\frac{x^2_0+2x_0+2}{x_0+1}\)

 
\(\Delta\) cắt tiệm cận đứng tại \(A\left(-1;\frac{2}{x_0+1}\right)\) và cắt tiệm cận xiên tại \(B\left(2x_0+1;2x_0+2\right)\)
\(\begin{cases}\frac{x_A+x_B}{2}=x_0=x_M\\\frac{y_A+y_B}{2}=\frac{x_0^2+2x_0+2}{x_0+1}=y_M\end{cases}\)\(\Rightarrow\) M là trung điểm của AB
Gọi H là hình chiếu của B lên IA
\(\Rightarrow BH=2\left|x_0+1\right|\) mà \(IA=\frac{2}{\left|x_0+1\right|}\) 
suy ra \(S_{\Delta ABI}=\frac{1}{2}BH.IA=2\) => điều cần chứng minh
 
b) Ta có : \(AB^2=4\left[2\left(x+1\right)^2+\frac{1}{\left(x+1\right)^2}-2\right]\ge4\left(2\sqrt{2}-2\right)\Rightarrow AB\ge2\sqrt{2\sqrt{2}-2}\)
Đẳng thức xảy ra \(\Leftrightarrow2\left(x_0+1\right)^4=1\Leftrightarrow x_0=-1\pm\frac{1}{\sqrt[4]{2}}\)
 
c) Xét \(M\left(x_0;y_0\right)\in\left(C\right)\). Tiếp tuyến tại M vuông góc với tiệm cận xiên
\(\Leftrightarrow y'\left(x\right)=-1\Leftrightarrow\frac{x^2_0+2x_0}{\left(x_0+1\right)^2}=-1\Leftrightarrow2x^2_0+4x_0+1=0\Leftrightarrow x_0=\frac{-2\pm\sqrt{2}}{2}\)
Vậy \(M\left(\frac{-2\pm\sqrt{2}}{2};\pm\frac{3\sqrt{2}}{2}\right)\)
 
AH
Akai Haruma
Giáo viên
28 tháng 5 2022

Lời giải:
PT hoành độ giao điểm:

$\frac{-4x+12}{x+1}=2x+m$

$\Rightarrow -4x+12=(2x+m)(x+1)$

$\Leftrightarrow 2x^2+x(m+6)+m-12=0(*)$

Ta thấy:

\(2(-1)^2+(-1)(m+6)+m-12=-16\neq 0\)

$\Delta (*)=(m+6)^2-8(m-12)=m^2+4m+132=(m+2)^2+128>0$ với mọi $m$ 

$\Rightarrow (*)$ luôn có 2 nghiệm pb khác -1 với mọi $m$

Tức là $(d)$ cắt $(C)$ tại 2 điểm phân biệt với mọi $m$ (đpcm)

28 tháng 5 2022

2 ( − 1 ) 2 + ( − 1 ) ( m + 6 ) + m − 12 = − 16 ≠ 0

dòng này là sao vậy ạ?

NV
15 tháng 6 2019

Câu 1:

\(f'\left(1\right)=g'\left(1\right)=k\)

\(h\left(x\right)=\frac{f\left(x\right)+2}{g\left(x\right)+1}\Rightarrow h'\left(x\right)=\frac{f'\left(x\right)\left[g\left(x\right)+1\right]-g'\left(x\right)\left[f\left(x\right)+2\right]}{\left[g\left(x\right)+1\right]^2}\)

\(\Rightarrow h'\left(1\right)=\frac{k\left(b+1\right)-k\left(a+2\right)}{\left(b+1\right)^2}=\frac{k\left(b-a-1\right)}{\left(b+1\right)^2}\)

\(h'\left(1\right)=k\Rightarrow k=\frac{k\left(b-a-1\right)}{\left(b+1\right)^2}\Rightarrow\frac{b-a-1}{\left(b+1\right)^2}=1\)

\(\Leftrightarrow b-a-1=\left(b+1\right)^2\Rightarrow a=b-1-\left(b+1\right)^2\)

\(\Rightarrow a=-b^2-b-2\)

NV
15 tháng 6 2019

Câu 2:

\(y=f\left(x\right)=\frac{x+1}{x-2}\Rightarrow f'\left(x\right)=\frac{-3}{\left(x-2\right)^2}\)

Phương trình hoành độ giao điểm:

\(\frac{x+1}{x-2}=x+m\Leftrightarrow x+1=\left(x+m\right)\left(x-2\right)\)

\(\Leftrightarrow x^2+\left(m-3\right)x-2m-1=0\)

\(\Delta=\left(m-3\right)^2+4\left(2m+1\right)=\left(m+1\right)^2+12>0\)

\(\Rightarrow\) d luôn cắt (P) tại 2 điểm phân biệt A và B có hoành độ giả sử là a và b

Theo Viet: \(\left\{{}\begin{matrix}a+b=3-m\\ab=-3m-1\end{matrix}\right.\) \(\Rightarrow3a+3b-ab=10\) (1)

Mặt khác do tiếp tuyến tại A và B song song

\(\Leftrightarrow\frac{-3}{\left(a-2\right)^2}=\frac{-3}{\left(b-2\right)^2}\Leftrightarrow\left[{}\begin{matrix}a-2=b-2\\a-2=2-b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=4-b\end{matrix}\right.\)

TH1: \(a=b\) thay vào (1):

\(\Rightarrow-a^2+6a-10=0\left(vn\right)\)

TH2: \(a=4-b\)

\(\Rightarrow a+b=4\Rightarrow3-m=4\Rightarrow m=-1\)