Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐKXĐ: \(x\ge-\frac{10}{3}\)
Điều kiện có nghiệm : \(x^2+9x+20\ge0\Leftrightarrow\orbr{\begin{cases}x\ge-4\\x\le-5\end{cases}}\)
Kết hợp ta có điều kiện \(x\ge-\frac{10}{3}.\)
Từ phương trình ta có: \(x^2+9x+18=2\left(\sqrt{3x+10}-1\right)\)
\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=2.\frac{3x+9}{\sqrt{3x+10}+1}\)
\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=\frac{6\left(x+3\right)}{\sqrt{3x+10}+1}\)
\(\Leftrightarrow\left(x+3\right)\left(x+6-\frac{6}{\sqrt{3x+10}+1}\right)=0\)
TH1: x = - 3 (tm)
Th2: \(x+6-\frac{6}{\sqrt{3x+10}+1}=0\)
\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x+6-6=0\)
\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x=0\)
Đặt \(\sqrt{3x+10}=t\Rightarrow x=\frac{t^2-10}{3}\)
Vậy thì \(\left(\frac{t^2-10}{3}+6\right)t+\frac{t^2-10}{3}=0\)
\(\Leftrightarrow\frac{t^3+8t}{3}+\frac{t^2-10}{3}=0\Leftrightarrow t^3+t^2+8t-10=0\Leftrightarrow t=1\Leftrightarrow x=-3\left(tm\right).\)
Vậy pt có 1 nghiệm duy nhất x = - 3.
b. Nhân 2 vào hai vế của phương trình thứ nhất rồi trừ từng vế cho phương trình thứ hai, ta được:
\(2x^2y^2-4x+2y^2-\left(2x^2-4x+y^3+3\right)=0\)
\(\Leftrightarrow2x^2y^2-2x^2-y^3+2y^2-3=0\)
\(\Leftrightarrow2x^2\left(y^2-1\right)-\left(y+1\right)\left(y^2-3y+3\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(2x^2y-2x^2-y^2+3y-3\right)=0\)
Với y = - 1 ta có \(x^2-2x+1=0\Leftrightarrow x=1.\)
Với \(\left(2x^2+3\right)y-\left(2x^2+3\right)-y^2=0\Leftrightarrow\left(2x^2+3\right)\left(y-1\right)=y^2\)
\(\Rightarrow\frac{y^2}{y-1}-4x=-y^3\Rightarrow x=\frac{y^4-y^3+y^2}{4\left(y-1\right)}\)
Thế vào pt (1) : Vô nghiệm.
Vậy (x; y) = (1; -1)
bn tự tìm ĐKXĐ nhé
Ta có:
\(3\left(x^2+2x+2\right)=10\sqrt{x^3+2x^2+2x+1}\)
\(\Leftrightarrow3\left(x^2+x+1\right)+2\left(x+1\right)=10\sqrt{\left(x+1\right)\left(x^2+x+1\right)}\)
Do \(x^2+x+1>0\forall x\)nên ta chia 2 vế của pt trên cho x^2+x+1, ta được:
\(3+3.\frac{x+1}{x^2+x+1}=10\sqrt{\frac{x+1}{x^2+x+1}}\)
Đặt \(\sqrt{\frac{x+1}{x^2+x+1}}=t\left(t\ge0\right)\)
Khi đó:
\(3t^2-10t+3=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=\frac{1}{3}\end{cases}}\)
Đến đây bạn tự giải nhé, dễ thôi mà
\(\sqrt[3]{2x+1}+\sqrt[3]{x}=1\)
Đặt \(\hept{\begin{cases}\sqrt[3]{2x+1}=a\\\sqrt[3]{x}=b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b=1\\a^3-2b^3=1\end{cases}}\)
\(\Rightarrow a^3-2\left(1-a\right)^3=1\)
\(\Leftrightarrow a^3-2a^2+2a-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2-a+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\sqrt[3]{2x+1}=1\\\sqrt[3]{x}=0\end{cases}}\)
\(\Leftrightarrow x=0\)
\(\sqrt[3]{2x+1}+\sqrt[3]{x}=1\)1
Đặt chug ở:\(\hept{\begin{cases}\sqrt[3]{2x+1=a}\\\sqrt[3]{x}=b\end{cases}}\)
=> Ta có:\(\hept{\begin{cases}\sqrt[a+b=1]{a^3-2b^3=1}\\\end{cases}}\)
=>\(a^3-2\left(1-a\right)^3=1\)
=>\(a^3-2a^2+2a-1=0\)
=>\(\left(a-1\right)\left(a^2-a+1=0\right)\)
=>\(\Leftrightarrow a=1;b=0\)
\(\Leftrightarrow x=0\)
ta có:
x3+8=(x+2)(x2-2x+4)
2x2-3x+10=2(x2-2x+4)+(x+2)
đặt \(\sqrt{x+2}=a;\sqrt{x^2-2x+4}=b\)
=>a2+2b2=3ab
<=>(a-b)(a-2b)=0
đến đây tự làm
Điều kiện : \(x\ge2\)
Phương trình tương đương :
\(3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)\(=2x^2-3x+10\)
Đặt \(\sqrt{x+2}\)\(=a\) \(,\)\(\sqrt{x^2-2x+4}\)\(=b\)
Thì ta có \(a^2+2b^2=2x^2-3x+10\)
Phương trình trở thành \(a^2-3ab+2b^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2b\\a=b\end{cases}}\)
TH1:\(a=b\Rightarrow x+2=x^2-2x+4\Leftrightarrow x^2-3x+2=0\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
TH2:\(a=2b\rightarrow2x^2-5x+6=0\)phương trình này vô nghiệm
a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0
=> hoặc (3x2 - 7x – 10) = 0 (1)
hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)
Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0
nên
x1 = - 1, x2 = =
Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0
nên
x3 = 1, x4 =
b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0
=> hoặc x + 3 = 0
hoặc x2 - 2 = 0
Giải ra x1 = -3, x2 = -√2, x3 = √2
c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0
=> hoặc 0,6x + 1 = 0 (1)
hoặc x2 – x – 1 = 0 (2)
(1) ⇔ 0,6x + 1 = 0
⇔ x2 = =
(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5
x3 = , x4 =
Vậy phương trình có ba nghiệm:
x1 = , x2 = , x3 = ,
d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0
⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0
⇔ (2x2 + x)(3x – 10) = 0
⇔ x(2x + 1)(3x – 10) = 0
Hoặc x = 0, x = , x =
Vậy phương trình có 3 nghiệm:
x1 = 0, x2 = , x3 =
Đặt \(\hept{\begin{cases}\sqrt{2x^2+7x+10}=a\left(a>0\right)\\\sqrt{2x^2+x+4}=b\left(b>0\right)\end{cases}}\)
Ta có \(a^2-b^2=6x+6\)
Từ đó PT ban đầu thành
\(a+b=\frac{a^2-b^2}{2}\)
\(\Leftrightarrow2\left(a+b\right)-\left(a^2-b^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(2-a+b\right)=0\)
\(\Leftrightarrow a=2+b\)
\(\Leftrightarrow\sqrt{2x^2+7x+10}=2+\sqrt{2x^2+x+4}\)
\(\Leftrightarrow3x+1=2\sqrt{2x^2+x+4}\)
\(\Leftrightarrow x^2+2x-15=0\)
\(\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
\(2x-3=10\)
\(2x=10+3\)
\(2x=13\)
\(x=13\colon2=6,5\)
\(2x-3=10\)
\(2x=10+3\)
\(2x=13\)
\(x=13\colon2=6,5\)