Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)
\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)
\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)
\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)
Đặt \(x^2+7x+10=t\), ta có:
\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)
\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)
a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)
\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=10^2-2.\left(-3\right)^2=82\)
b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)
\(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=1.\left(1-2xy-xy\right)+3xy=1\)
Các câu còn lại tương tự
b \(2x^4-y^4+x^2y^2+3y^2=\left(x^4-y^4\right)+\left(x^4+x^2y^2\right)+3y^2=\left(x^2-y^2\right)\left(x^2+y^2\right)+x^2\left(x^2+y^2\right)+3y^2\)
\(=\left(x^2-y^2\right)\cdot1+x^2\cdot1+3y^2=x^2-y^2+x^2+3y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\cdot1=2\)
a \(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)=2\left(\left(x^2\right)^3+\left(y^2\right)^3\right)-3x^4-3y^4=2\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)\)
\(-3x^4-3y^4=2\cdot1\left(x^4-x^2y^2+y^4\right)-3x^4-3y^4=2x^4-2x^2y^2+2y^4-3x^4-3y^4\)
\(=-x^4-2x^2y^2-y^4=-\left(x^4+2x^2y^2+y^4\right)=-\left(x^2+y^2\right)^2=-1^2=-1\)
#)Giải :
2)
Đặt \(A=x^3-y^3-36xy\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-36xy\)
\(=\left(x-y\right)\left[\left(x-y\right)^2+3xy\right]\)
\(=12.12^2+3.12xy-36xy\)
\(=12^3\)
#)Giải :
1)
Ta có \(x+y=-5\Rightarrow\left(x+y\right)^2=x^2+y^2+2xy=\left(-5\right)^2=25\)
\(\Rightarrow2xy=25-11=14\)
\(\Rightarrow xy=7\)
\(\Rightarrow2xy.xy=2x^2.y^2=14.7=98\)
\(\left(x^2+y^2\right)^2=11^2=121\)
\(\Rightarrow\left(x^4+y^4\right)+98=121\)
\(\Rightarrow x^4+y^4=23\)
Lời giải:
$x^3+y^3=(x+y)^3-3xy(x+y)=2^3-3xy.2=8-6xy$
$=8-3.2xy=8-3[(x+y)^2-(x^2+y^2)]=8-3(2^2-34)=98$
----------------
$x^4+y^4=(x^2+y^2)^2-2x^2y^2=34^2-\frac{1}{2}(2xy)^2$
$=34^2-\frac{1}{2}[(x+y)^2-(x^2+y^2)]^2=34^2-\frac{1}{2}(2^2-34)^2=706$