Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,Ta có: \(A=2\left[\left(x^2\right)^3+\left(y^2\right)^3\right]-3x^4-3y^4\)
\(=2\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)-3x^4-3y^4\)
Thay \(x^2+y^2=1,\) ta có:
\(A=2.1\left(x^4-x^2y^2+y^4\right)-3x^4-3y^4\)
\(=2x^4-2x^2y^2+2y^4-3x^4-3y^4\)
\(=-\left(x^4+2x^2y^2+y^4\right)=-\left(x^2+y^2\right)^2=-1\)
2,Ta có: \(B=\left(x^2-y^2\right)\left(x^2+y^2\right)+\left(x^4+x^2y^2\right)+3y^2\)
\(=\left(x^2-y^2\right).1+x^2\left(x^2+y^2\right)+3y^2\)
\(=x^2-y^2+x^2+3y^2=2\left(x^2+y^2\right)=2\)
a) \(\dfrac{6x^2y^3-2x^2y+6xy}{6xy}\)
\(=\dfrac{6x^2y^3}{6xy}-\dfrac{2x^2y}{6xy}+\dfrac{6xy}{6xy}\)
\(=xy^2-\dfrac{x}{3}+1\)
b) \(\dfrac{4\left(x+y\right)^3}{2\left(x+y\right)}\)
\(=\dfrac{2\left(x+y\right).2\left(x+y\right)^2}{2\left(x+y\right)}\)
\(=2\left(x+y\right)^2\)
c) \(\dfrac{8x^3+27y^3}{2x+3y}\)
\(=\dfrac{\left(2x\right)^3+\left(3y\right)^3}{2x+3y}\)
\(=\dfrac{\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]}{2x+3y}\)
\(=4x^2-6xy+9y^2\)
d) \(\dfrac{48x^4y^3-12x^2y^5+6x^2y^2}{3x^2y^2}\)
\(=\dfrac{48x^4y^3}{3x^2y^2}-\dfrac{12x^2y^5}{3x^2y^2}+\dfrac{6x^2y^2}{3x^2y^2}\)
\(=16x^2y-4y^3+2\)
Bài 1 : Khai triển :
a, \(\left(x+5\right)^2=x^2+10x+25\)
b, \(\left(x-3y\right)^2=x^2-6xy+9y^2\)
c, \(\left(x^2-6z\right)\left(x^2+6z\right)=x^4-36z^2\)
d, \(\left(x+3y\right)^3=x^3+9x^2y+27xy^2+27y^3\)
e, \(27x^3-9y^2+y-\frac{1}{27}=\left(3x-\frac{1}{3}\right)^3\)
g, \(8x^6+12x^4y+6x^2y^2+y^3=\left(2x^2+y\right)\)
h, \(4x^2+12x^4y+6x^22y^2+y^3=\left(\sqrt[3]{4x^2}+y\right)\)
Bài 1:
a) 25x2 - 10xy + y2 = (5x - y)2
b) 81x2 - 64y2 = (9x)2 - (8y)2 = (9x - 8y)(9x + 8y)
c) 8x3 + 36x2y + 54xy2 + 27y3
= 8x3 + 27y3 + 36x2y + 54xy2
= (2x + 3y)(4x2 - 6xy + 9y2) + 18xy(2x + 3y)
= (2x + 3y)(4x2 - 6xy + 18xy + 9y2)
= (2x + 3y)(4x2 + 12xy + 9y2)
= (2x + 3y)(2x + 3y)2 = (2x + 3y)3
c) (a2 + b2 - 5)2 - 4(ab + 2)2 = (a2 + b2 - 5)2 - 22(ab + 2)2
= (a2 + b2 - 5)2 - (2ab + 4)2
= (a2 + b2 - 5 - 2ab - 4)(a2 + b2 - 5 + 2ab + 4)
= (a2 - 2ab + b2 - 9)(a2 + 2ab + b2 - 1)
= \(\left [ (a - b)^{2} - 3^{2} \right ]\)\(\left [ (a + b)^{2} - 1\right ]\)
= (a - b - 3)(a - b + 3)(a + b - 1)(a + b + 1)
pn đăng mỗi lần vài bài thôi chứ đăng nhìn ngán lắm
Bài 2:
a) 2x3 + 3x2 + 2x + 3
= 2x3 + 2x + 3x2 + 3
= 2x(x2 + 1) + 3(x2 + 1)
= (x2 + 1)(2x + 3)
b)x3z + x2yz - x2z2 - xyz2
= xz(x2 + xy - xz - yz)
= \(xz\left [ x(x + y) - z(x + y) \right ]\)
= xz(x + y)(x - z)
c) x2y + xy2 - x - y
= xy(x + y) - (x + y)
= (x + y)(xy - 1)
d) 8xy3 - 5xyz - 24y2 + 15z
= 8xy3 - 24y2 - 5xyz + 15z
= 8y2(xy - 3) - 5z(xy - 3)
= (xy - 3)(8y2 - 5z)
e) x3 + y(1 - 3x2) + x(3y2 - 1) - y3
= x3 - y3 + y - 3x2y + 3xy2 - x
= (x - y)(x2 + xy + y2) - 3xy(x - y) - (x - y)
= (x - y)(x2 + xy + y2 - 3xy - 1)
= (x - y)(x2 - 2xy + y2 - 1)
= \((x - y)\left [ (x - y)^{2} - 1 \right ]\)
= (x - y)(x - y - 1)(x - y + 1)
câu f tương tự
b \(2x^4-y^4+x^2y^2+3y^2=\left(x^4-y^4\right)+\left(x^4+x^2y^2\right)+3y^2=\left(x^2-y^2\right)\left(x^2+y^2\right)+x^2\left(x^2+y^2\right)+3y^2\)
\(=\left(x^2-y^2\right)\cdot1+x^2\cdot1+3y^2=x^2-y^2+x^2+3y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\cdot1=2\)
a \(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)=2\left(\left(x^2\right)^3+\left(y^2\right)^3\right)-3x^4-3y^4=2\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)\)
\(-3x^4-3y^4=2\cdot1\left(x^4-x^2y^2+y^4\right)-3x^4-3y^4=2x^4-2x^2y^2+2y^4-3x^4-3y^4\)
\(=-x^4-2x^2y^2-y^4=-\left(x^4+2x^2y^2+y^4\right)=-\left(x^2+y^2\right)^2=-1^2=-1\)