Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số bút loại 1;2;3 được mua lần lượt là a,b,c
Theo đề, ta có: 6a=5b=4c và a+b+c=74
=>a/10=b/12=c/15 và a+b+c=74
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{10}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a+b+c}{10+12+15}=\dfrac{74}{37}=2\)
=>a=20; b=24; c=30
Gọi số lượng quyển vở bạn mua ở ba loại lần lượt là x,y,z (quyển) (x,y,z \( \in \)N*). Ta có x+y+z = 34
Vì số tiền bạn ấy dành để mua mỗi loại vở là như nhau nên số quyển vở và giá tiền loại tương ứng là 2 đại lượng tỉ lệ nghịch
Áp dụng tính chất đại lượng tỉ lệ nghịch, ta có:
12.x=18.y=20.z
\( \Rightarrow \dfrac{x}{{\dfrac{1}{{12}}}} = \dfrac{y}{{\dfrac{1}{{18}}}} = \dfrac{z}{{\dfrac{1}{{20}}}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{x}{{\dfrac{1}{{12}}}} = \dfrac{y}{{\dfrac{1}{{18}}}} = \dfrac{z}{{\dfrac{1}{{20}}}} = \dfrac{{x + y + z}}{{\dfrac{1}{{12}} + \dfrac{1}{{18}} + \dfrac{1}{{20}}}} = \dfrac{{34}}{{\dfrac{{17}}{{90}}}} = 34:\dfrac{{17}}{{90}} = 34.\dfrac{{90}}{{17}} = 180\\ \Rightarrow x = 180.\dfrac{1}{{12}} = 15\\y = 180.\dfrac{1}{{18}} = 10\\z = 180.\dfrac{1}{{20}} = 9\end{array}\)
Vậy số quyển vở bạn An mua mỗi loại là 15 quyển, 10 quyển và 9 quyển.
Theo đề bài số bi còn lại của 3 loại bi có quan hệ như sau
1/2 số bi xanh = 1/3 số bi đỏ = 1/4 số bi vàng
=> Số bi xanh : số bi đỏ : số bi vàng = 2:3:4
Số bi xanh
[108:(2+3+4)].2=24 viên
Số bi đỏ
[108:(2+3+4)].3=36 viên
Số bi vàng
[108:(2+3+4)].4=48 viên
Bài 1:
Giải:
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2z^2}{32}=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4\)
+) \(\frac{x^2}{4}=4\Rightarrow x=\pm4\)
+) \(\frac{y^2}{9}=4\Rightarrow y=\pm6\)
+) \(\frac{z^2}{16}=4\Rightarrow z=\pm8\)
Vậy bộ số \(\left(x,y,z\right)\) là \(\left(4,6,8\right);\left(-4,-6,-8\right)\)
Số quả trứng bố Vinh mua được là:
20*3000:4000=15(quả)
Gọi x, y, z lần lượt là số viên bi của ba bạn Minh, Hùng, Dũng
Theo đề bài ta có: và x + y + z = 44
Theo tính chất của dãy tỉ số bằng nhau ta có
=
Do đó:
Vậy số viên bi của Minh, Hùng, Dũng theo thứ tự 8, 16, 20
Gọi số bi của 3 bạn là a ; b ; c
Theo đề ra ta có :
\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}\)
a+b+c=44
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{44}{11}=4\)
\(\Rightarrow\begin{cases}a=8\\b=16\\c=20\end{cases}\)
Gọi số viên bi loại 5000, 3000,2000 bạn Tùng mua lần lượt là a(viên),b(viên),c(viên)
(Điều kiện: \(a,b,c\in Z^+\))
Số tiền bạn Tùng mua loại bi 5000 đồng là: 5000a(đồng)
Số tiền bạn tùng mua loại bi 3000 đồng là 3000b(đồng)
Số tiền bạn tùng mua loại bi 2000 đồng là 2000c(đồng)
Vì số tiền bạn tùng mua 3 loại bi là ngang nhau nên ta có:
5000a=3000b=2000c
=>5a=3b=2c
=>\(\dfrac{5a}{30}=\dfrac{3b}{30}=\dfrac{2c}{30}\)
=>\(\dfrac{a}{6}=\dfrac{b}{10}=\dfrac{c}{15}\)
Số viên bi là 62 viên nên a+b+c=62
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{10}=\dfrac{c}{15}=\dfrac{a+b+c}{6+10+15}=\dfrac{62}{31}=2\)
=>\(a=2\cdot6=12;b=2\cdot10=20;c=2\cdot15=30\)
Vậy: Số viên bi loại 5000 đồng Tùng mua là 12 viên
Số viên bi loại 3000 đồng Tùng mua là 20 viên
Số viên bi loại 2000 đồng Tùng mua là 30 viên