Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của phamvanquyettam - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
Đặt \(B=2^2+2^3+2^4+...+2^{20}\)
\(2B=2^3+2^4+2^5+...+2^{21}\)
\(B=2B-B=2^{21}-2^2=2^{21}-4\)
\(A=4+B=4+2^{21}-4=2^{21}\left(dpcm\right)\)
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!!
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!!
Câu 1,
\(S=1+2+2^2+...+2^7\)
\(=\left(1+2\right)+2^2\left(1+2\right)+2^4\left(1+2\right)+2^6\left(1+2\right)\)
\(=3+2^2.3+2^4.3+2^6.3\)
\(=3\left(1+2^2+2^4+2^6\right)⋮3\)
Nên S chia hết cho 3
Câu 2 ,
\(A=5+5^2+5^3+...+5^{20}\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{19}\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{19}.6\)
\(=6\left(5+5^3+...+5^{19}\right)⋮6\)
Nên A chia hết cho 6
Sửa \(\frac{a+2003}{a-2003}=\frac{b+2004}{b-2004}\)
Giả sử ngược lại thì ta có \(\frac{a}{2003}=\frac{b}{2004}\)và ta cần chứng minh \(\frac{a+2003}{a-2003}=\frac{b+2004}{b-2004}\)
Đặt \(\frac{a}{2003}=\frac{b}{2004}=k\Rightarrow\hept{\begin{cases}a=2003k\\b=2004k\end{cases}}\)
Khi đó \(\frac{a+2003}{a-2003}=\frac{2003k+2003}{2003k-2003}=\frac{2003\left(k+1\right)}{2003\left(k-1\right)}=\frac{k+1}{k-1}\)(1)
\(\frac{b+2004}{b-2004}=\frac{2004k+2004}{2004k-2004}=\frac{2004\left(k+1\right)}{2004\left(k-1\right)}=\frac{k+1}{k-1}\)(2)
Từ (1) và (2) => \(\frac{a+2003}{a-2003}=\frac{b+2004}{b-2004}\)
=> đpcm
Không hiểu chỗ nào thì ib nhé :)
\(\frac{a+2003}{a-2003}=\frac{b+2004}{b-2004}\Leftrightarrow\frac{\frac{a}{2003}+1}{\frac{a}{2003}-1}=\frac{\frac{b}{2004}+1}{\frac{b}{2004}-1}\)
Đặt \(\frac{a}{2003}=x,\frac{b}{2004}=y\Rightarrow\frac{x+1}{x-1}=\frac{y+1}{y-1}\Leftrightarrow\left(x+1\right)\left(y-1\right)=\left(x-1\right)\left(y+1\right)\)
\(\Leftrightarrow xy-x+y-1=xy+x-y-1\Leftrightarrow2x=2y\Leftrightarrow x=y\)-----> Xooooong :)))
Tham khảo : Câu hỏi của Clash Of Clans - Toán lớp 6 - Học toán với OnlineMath
\(A=4+2^2+2^3+2^4+.....+2^{19}+2^{20}\)
\(\Rightarrow2A=2.\left(4+2^2+2^3+....+2^{20}\right)\)
\(=8+2^3+2^4+2^5+.....+2^{21}\)
DO ĐÓ; \(2A-A=8+2^{21}-\left(4+2^2\right)=2^{21}+8-8=2^{21}\)
VẬY A LÀ LŨY THỪA CỦA 2
A=4+22+23+...+220
Đặt B=22+23+...+220
=>2B=23+24+...+221
=>2B-B=221-22=221-4
=>A=4+B=4+221-4=221
=>A là lũy thừa của 2(ĐPCM)
b)A=3+32+33+...+3100
=>3A=32+33+...+3101
=>3A-A=3101-3
=>2A=3101-3
=>2A+3=3101-3+3=3101
Vậy 2A+3 là lũy thừa của 3(ĐPCM)
Vì A là lũy thừa của 2
Ta có : \(A=4+2^3+2^4+2^5+...+2^{2003}+2^{2004}\)
=> \(A=2^2+2^3+2^4+...+2^{2003}+2^{2004}\)
=> \(2A=2^3+2^4+2^5+...+2^{2004}+2^{2005}\)
=> \(2A-A=\left(2^3+2^4+...+2^{2005}\right)-\left(2^2+2^3+...+2^{2004}\right)\)
=> \(A=2^{2005}-2^2\)
(làm đc từng này thôi ^^)