Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=3^{101}-3\)
Ta có:
\(2A+3=3n\)
\(3^{101}-3+3=3n\)
\(3^{101}=3n\)
\(n=3^{101}:3\)
\(n=3^{100}\)
\(3A=3^2+3^3+3^4+....+3^{101}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+3^4+....+3^{100}\right)\)
\(2A=3^{101}-3\)
\(A=\frac{3^{101}-3}{2}\)
thay \(A=\frac{3^{101}-3}{2}\)vào 2A + 3 = 3n ta được
\(2.\frac{3^{101}-3}{2}+3=3n\)
\(3^{101}-3+3=3n\)
\(3^{101}=3n=>n=3^{101}:3=3^{100}\)
Ta có : \(A=3+3^2+3^3+...+3^{2009}\)
=> \(3A=3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
=> \(3A-A=\left(3^2+3^3+...+3^{2010}\right)-\left(3+3^2+...+3^{2009}\right)\)
=> \(2A=3^{2010}-3\)
=> \(2A+3=3^{2010}-3+3\)
=> \(2A+3=3^n=3^{2010}\)
=> \(n=2010\)
A = 3 + 32 + 33 +...+32019
-> 3A = 3 (3 + 32 + 33 +...+32019)
-> 3A = 32 + 33 + 34 +...+32020
-> 3A - A = (32 + 33 + 34 +...+ 32020) - (3 + 32 + 33 +...+32019)
-> 2A = 32020 - 3
\(\rightarrow A=\frac{3^{2020}-3}{2}\)
Ta có: \(2A+3=3^n\)
\(\Rightarrow2\cdot\frac{3^{2020}-3}{2}+3=3^n\)
\(\Rightarrow3^{2020}-3+3=3^n\)
=> 32020 = 3n => n = 2020
Trl:
\(A=3+3^2+3^3+...+3^{2018}\)
\(3A=3^2+3^3+3^4+...+3^{2017}+3^{2018}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\)
\(\Rightarrow2A+3=3^{101}\)
\(\Rightarrow n=101\)
Vậy n = 101
Hc tốt
Ta có \(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=3^{101}-3\)
\(2A=3^{101}-3\)
Ta có \(2A+3=3^n\)
hay \(3^{101}-3+3=3^n\)
\(3^{101}=3^n\)
\(n=101\)
A=3+32+33+.....+3100
3a=3.(3+32+33+....+3100)
3A=32+33+34+....+3101
3A-A=(32+33+34+....+3101)-(3+32+33+.....+3100)
2A=3101-3
2A+3=3101-3+3
2A+3=3101
3n=3101
=>n\(\in\)(101)
Chúc bn học tốt
3A=32+3334+...+3100+3101
\(\Rightarrow\)3A-A=(32+33+34+...+3100+3101)-(3+32+33+34+...+3100)
\(\Rightarrow\)2A=3100-3\(\Rightarrow\)2A+3=3101
\(\Rightarrow\)n=101
\(A=3+3^2+...+3^{99}\)
\(\Rightarrow3A=3.\left(3+3^2+...+3^{99}\right)\)
\(\Rightarrow3A=3^2+3^3+...+3^{100}\)
\(\Rightarrow3A-A=3^2+3^3+...+3^{100}-3-3^2-...-3^{99}\)
\(\Rightarrow2A=3^{100}-3\)
Thay 2A = 3100 - 3 vào 2A + 3 = 3n, ta có:
\(3^{100}-3+3=3^n\)
\(\Rightarrow3^{100}=3^n\Rightarrow n=100\)
=>3A=32+33+…+32010
=>3A-A=32+33+…+32010-3-32-…-32009
=>2A=32010-3
=>2A+3=32010=3N
=>N=2010
A = 3+32+33+......+32009
3A = 32+33+34+......+32010
2A = 3A - A = 32010-3
=> 2A + 3 = 32010
Mà 2A + 3 = 3n
=> n = 2010
3A=3^2+3^3+3^4+...+3^2010
2A=3^2010-3
2A+3=3^2010-3+3=3^n
3^2010=3^n
n=2010
A=3+3^2+3^3+...+3^2009
=>3A=3^2+3^3+3^4+...+3^2010
=>3A-A=3^2010-3
=>2A=3^2010-3
=>2A+3=3^2010
=>n=2010
\(3A=3^2+3^3+3^4+...+3^{100}.\)
\(\Rightarrow2A=3A-A=3^{100}-3\)
\(\Rightarrow2A+3=3^{100}+3-3=3^{100}=3^n\Rightarrow n=100\)