Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(-\frac{5}{2}\right)^2:\left(-15\right)-\left(-0,45+\frac{3}{4}\right).\left(-1\frac{5}{9}\right)\)
= \(-\frac{25}{4}:\left(-15\right)-\left(\frac{9}{20}+\frac{15}{20}\right).\left(-\frac{14}{9}\right)\)
=\(-\frac{25}{4}.\frac{1}{-15}-\frac{6}{5}.\left(-\frac{14}{9}\right)\)
= \(\frac{-5}{12}-\frac{8}{5}\)
= \(\frac{\left(-25\right)-96}{60}\)
= \(\frac{\left(-25\right)+\left(-96\right)}{60}\)
=\(\frac{121}{60}\)
b) \(\left(\frac{-1}{3}\right)-\left(\frac{-3}{5}\right)^0+\left(1-\frac{1}{2}\right)^2:2\)
= \(\left(\frac{-1}{3}\right)-1+\left(\frac{1}{2}\right)^2.\frac{1}{2}\)
=\(\left(\frac{-1}{3}\right)-\frac{3}{3}+\frac{1}{4}.\frac{1}{2}\)
= \(\frac{-4}{3}+\frac{1}{8}\)=\(\frac{-32+3}{24}\)
=\(\frac{-29}{24}\)
c) E=\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
=\(\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.6^9}{2^{10}.3^8+6^8.20}\)
=\(\frac{2^{10}.3^8-2.6^9}{2^{10}.3^8+6^8.20}\)
=\(\frac{3}{5}\)
d)\(\frac{5^4.20^4}{25^5.4^5}\)
=\(\frac{\left(5.20\right)^4}{\left(25.4\right)^5}\)
=\(\frac{100^4}{100^5}\)
=\(\frac{1}{100}\)
\(a)\left(\dfrac{1}{2}+1,5\right)x=\dfrac{1}{5}\)
\(\Rightarrow2x=\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{1}{10}\)
\(b)\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=\dfrac{13}{6}.\dfrac{12}{13}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=2\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(c)\left(x:2\dfrac{1}{3}\right).\dfrac{1}{7}=-\dfrac{3}{8}\)
\(\Leftrightarrow x:\dfrac{7}{3}=-\dfrac{3}{8}:\dfrac{1}{7}\)
\(\Leftrightarrow x=-\dfrac{21}{8}.\dfrac{7}{3}\)
\(\Leftrightarrow x=-\dfrac{49}{8}\)
\(d)-\dfrac{4}{7}x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1\dfrac{2}{3}\right)\)
\(\Leftrightarrow-\dfrac{4}{7}x+\dfrac{7}{5}=-\dfrac{3}{40}\)
\(\Leftrightarrow-\dfrac{4}{7}x=-\dfrac{59}{40}\)
\(\Leftrightarrow x=\dfrac{413}{160}\)
a, \(\frac{1}{4}+\frac{5}{12}-\frac{1}{13}-\frac{7}{8}\)
\(=\left(\frac{1}{4}+\frac{5}{12}\right)-\left(\frac{1}{13}+\frac{7}{8}\right)\)
\(=\frac{2}{3}-\frac{99}{104}\)
\(=-\frac{89}{312}\)
b, \(11\frac{3}{13}-2\frac{4}{7}+5\frac{3}{13}\)
\(=\left(11\frac{3}{13}+5\frac{3}{13}\right)-2\frac{4}{7}\)
\(=\frac{214}{13}-\frac{18}{7}\)
\(=\frac{1264}{91}\)
c, \(\left(6\frac{4}{9}+3\frac{7}{11}\right)-4\frac{4}{9}\)
\(=6\frac{4}{9}+3\frac{7}{11}-4\frac{4}{9}\)
\(=\left(6\frac{4}{9}-4\frac{4}{9}\right)+3\frac{7}{11}\)
\(=2+3\frac{7}{11}\)
\(=5\frac{7}{11}\)
\(=\frac{62}{11}\)
d, \(\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-0,25-\frac{1}{12}\right)\)
\(=\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)
\(=\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\cdot0\)
\(=0\)
e, \(-1,5\cdot\left(1+\frac{2}{3}\right)\)
\(=-\frac{3}{2}\cdot\frac{5}{3}\)
\(=-\frac{5}{2}\)
f, Đặt \(A=1^2+2^2+3^2+...+100^2\)
\(=1+2\left(3-1\right)+3\left(4-1\right)+...+100\left(101-1\right)\)
\(=1+2\cdot3-2+3\cdot4-3+...+100\cdot101-100\)
\(=\left(2\cdot3+3\cdot4+...+100\cdot101\right)-\left(1+2+3+...+100\right)\)
Đặt B = 2 . 3 + 3 . 4 + ... + 100 . 101
3B = 2 . 3 ( 4 - 1 ) + 3 . 4 ( 5 - 2 ) + ... + 100 . 101 . ( 102 - 99 )
3B = 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + ... + 100 . 101 . 102 - 99 . 100 . 101
3B = 100 . 101 . 102
B = \(\frac{100\cdot101\cdot102}{3}\)
B = 343400
Thay B vào A. Ta được :
\(A=343400-\left(1+2+3+...+100\right)\)
Thay C = 1 + 2 + 3 + ... + 100
Dãy số 1; 2; 3; ...; 100 có số số hạng là:
( 100 - 1 ) : 1 + 1 = 100 ( số hạng )
Tổng của dãy số đó là :
( 100 + 1 ) . 100 : 2 = 5050
=> C = 5050
Thay C vào A. Ta được :
\(A=343400-5050\)
\(A=338350\)
Vậy A = 338350