Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+...+100}\right)\)
\(A=\frac{2}{\left(1+2\right).2:2}.\frac{5}{\left(1+3\right).3:2}.\frac{9}{\left(1+4\right).4:2}...\frac{5049}{\left(1+100\right).100:2}\)
\(A=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{10098}{100.101}\)
\(A=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{99.102}{100.101}\)
\(A=\frac{1.2.3...99}{2.3.4...100}.\frac{4.5.6...102}{3.4.5...101}\)
\(A=\frac{1}{100}.\frac{102}{3}=100.34=\frac{1}{100}.34=\frac{17}{50}\)
\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)..\left(1-\frac{1}{2000^2}\right)\)
\(=\frac{1.3}{2^2}\cdot\frac{2.4}{3^2}\cdot\frac{3.5}{4^2}\cdot\cdot\cdot\cdot\frac{1998.2000}{1999^2}\cdot\frac{1999.2001}{2000^2}\)
\(=\frac{1}{2}\cdot\frac{2001}{2000}=\frac{2001}{4000}\)
\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{1999^2}\right)\left(1-\frac{1}{2000^2}\right)\)
=\(\left(\frac{4}{4}-\frac{1}{4}\right)\left(\frac{9}{9}-\frac{1}{9}\right)...\left(\frac{3996001}{3996001}-\frac{1}{3996001}\right)\left(\frac{4000000}{4000000}-\frac{1}{4000000}\right)\)
=\(\frac{3}{4}.\frac{8}{9}....\frac{3996000}{3996001}.\frac{3999999}{4000000}\)
=\(\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{1998.2000}{1999.1999}.\frac{1999.2001}{2000.2000}\)
=\(\frac{1.3.2.4.3.6.....1998.2000.1999.2001}{2.2.3.3.4.4....1999.1999.2000.2000}=\frac{1.2001}{2.2000}=\frac{2001}{4000}\)
\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)
\(\Rightarrow T=\frac{1004}{1005}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\frac{2010}{2011}\)
\(\Rightarrow A=\frac{1005}{2011}\)
\(\Rightarrow2A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2014}\)
\(\Rightarrow2A-A=A=1-\left(\frac{1}{2}\right)^{2015}\)
Với B tương tự nhưng là lấy 3B
a)
\(=\frac{3}{2}.\frac{4}{3}......\frac{100}{99}=\frac{100}{2}=50\)
b)
\(=\frac{\left(-1\right)}{2}.\frac{\left(-2\right)}{3}.....\frac{\left(-99\right)}{100}=\frac{-1}{100}\)