Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=\frac{3}{2}.\frac{4}{3}....\frac{100}{99}=\frac{100}{2}=50\)
a) =3/2 . 4/3 . 5/4 ...100/99
=\(\frac{3.4.5...100}{2.3.4..99}\)
=\(\frac{100}{2}\)
b) =
\(=\frac{-1}{2}.\frac{-2}{3}......................\frac{-1998}{1999}.\frac{-1999}{2000}\)
\(=\frac{\left(-1\right).\left(-2\right)....................\left(-1999\right)}{1.2.3........................2000}\)
\(=\frac{-1}{2000}\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{1998}{1999}.\frac{1999}{2000}=\frac{1}{2000}\)
duyệt đi
1, A=\(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{100}{99}\)
A= \(\frac{100}{2}\)
A=50
2, B=\(\frac{-1}{2}.\frac{-2}{3}....\frac{-98}{99}\)
B= \(\frac{1}{99}\)
\(A=\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot\left(\frac{1}{4}+1\right)......\left(\frac{1}{99}+1\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}......\frac{99}{98}\cdot\frac{100}{99}\)
\(=\frac{100}{2}\)
\(=50\)
\(B=\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)......\left(\frac{1}{99}-1\right)\)
\(=\left(-\frac{1}{2}\right)\cdot\left(-\frac{2}{3}\right)\cdot\left(-\frac{3}{4}\right).....\left(-\frac{97}{98}\right)\cdot\left(-\frac{98}{99}\right)\)
\(=-\frac{1}{99}\)
lam on ai biet thi chi trong toi nay tui se cho ma ngay mai la phai nop rui
\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)
\(\Rightarrow T=\frac{1004}{1005}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\frac{2010}{2011}\)
\(\Rightarrow A=\frac{1005}{2011}\)
a)
\(=\frac{3}{2}.\frac{4}{3}......\frac{100}{99}=\frac{100}{2}=50\)
b)
\(=\frac{\left(-1\right)}{2}.\frac{\left(-2\right)}{3}.....\frac{\left(-99\right)}{100}=\frac{-1}{100}\)
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+...+100}\right)\)
\(A=\frac{2}{\left(1+2\right).2:2}.\frac{5}{\left(1+3\right).3:2}.\frac{9}{\left(1+4\right).4:2}...\frac{5049}{\left(1+100\right).100:2}\)
\(A=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{10098}{100.101}\)
\(A=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{99.102}{100.101}\)
\(A=\frac{1.2.3...99}{2.3.4...100}.\frac{4.5.6...102}{3.4.5...101}\)
\(A=\frac{1}{100}.\frac{102}{3}=100.34=\frac{1}{100}.34=\frac{17}{50}\)