x2 + x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2023

Câu 5:

a: Khi m=3 thì \(f\left(x\right)=\left(2\cdot3+1\right)x-3=7x-3\)

\(f\left(-3\right)=7\cdot\left(-3\right)-3=-21-3=-24\)

\(f\left(0\right)=7\cdot0-3=-3\)

b: Thay x=2 và y=3 vào f(x)=(2m+1)x-3, ta được:

\(2\left(2m+1\right)-3=3\)

=>2(2m+1)=6

=>2m+1=3

=>2m=2

=>m=1

c: Thay m=1 vào hàm số, ta được:

\(y=\left(2\cdot1+1\right)x-3=3x-3\)

*Vẽ đồ thị

loading...

d: Để hàm số y=(2m+1)x-3 là hàm số bậc nhất thì \(2m+1\ne0\)

=>\(2m\ne-1\)

=>\(m\ne-\dfrac{1}{2}\)

e: Để đồ thị hàm số y=(2m+1)x-3 song song với đường thẳng y=5x+1 thì \(\left\{{}\begin{matrix}2m+1=5\\-3\ne1\end{matrix}\right.\)

=>2m+1=5

=>2m=4

=>m=2

Phần 1 : Trắc nghiệm : ( 3 điểm ) Câu 1: Chọn câu đúng trong các khẳng định sau.a) ( a - b )3 = ( b – a )3 b) ( x + 2 )2 – ( x + 5 )( x – 5 ) Rút gọn bằng 4x – 21 c) Kết quả của phép chia (-x)6 : x3 là x3 d) Nếu 2x3 – 2x = 0 thì x = 0 hoặc x = 1 hoặc x = -1 Câu 2: Chọn đáp án đúng ; Hình vuông là : a) Tứ giác có 4 cạnh...
Đọc tiếp

Phần 1 : Trắc nghiệm : ( 3 điểm )

Câu 1: Chọn câu đúng trong các khẳng định sau.

a) ( a - b )3 = ( b – a )3

b) ( x + 2 )2 – ( x + 5 )( x – 5 ) Rút gọn bằng 4x – 21

c) Kết quả của phép chia (-x)6 : x3 là x3

d) Nếu 2x3 – 2x = 0 thì x = 0 hoặc x = 1 hoặc x = -1

Câu 2: Chọn đáp án đúng ;

Hình vuông là :

a) Tứ giác có 4 cạnh bằng nhau.

b) Tứ giác có 4 góc bằng nhau.

c) Hình chữ nhật có 2 đường chéo bằng nhau

d) Hình chữ nhật có 2 cạnh bằng nhau.

e) Hình thoi có một góc vuông.

f) Tứ giác có 2 đường chéo vuông góc với nhau và bằng nhau.

Phần 2: Tự luận : ( 7 điểm )

Câu 1: Phân tích đa thức thành nhân tử : ( 2 điểm )

a) 2008a2 – 2008b2

b) x2 – 8x + 15

Câu 2: Cho M = ( x + 3)( x – 3) – ( x + 2)2 – 2( x2 – 4,5 ) ( 2 điểm )

a) Rút gọn biểu thức M

b) Tìm x để M = 0

Câu 3 : ( 3 điểm )

Cho DABC ; M nằm giữa BC. Từ M kẻ đường thẳng song song với AB và AC thứ tự cắt AC và AB tại D và E.

a) Tứ giác AEMD là hình gì ? Vì sao ?

b) Tìm điều kiện của M để tứ giác AEMD là hình thoi ( vẽ hình minh họa ).

c) Tìm điều kiện của DABC để tứ giác AEMD là hình chữ nhật .

 

2
30 tháng 10 2016

Phần I

Câu 1: c,d

Câu 2: e

Phần II

Câu 1:

a, 2008a2-2008b2=2008(a2-b2)=2008(a-b)(a+b)

b, x2-8x+15=x2-3x-5x-+15=x(x-3)-5(x-3)=(x-5)(x-3)

Câu 2:

a, M= (x-3)(x+3)-(x+2)2-2(x2-4,5)

M= x2-9-(x2+4x+4)-2x2+9

M= x2-9-x2-4x-4-2x2+9

M= -2x2-4x-4

M= -2(x2+2x+2)b, Để M=0 -> -2(x2+2x+2)=0->x2+2x+2=0

30 tháng 10 2016

Phần 1:

Câu 1: D

Câu 2: E

Phần 2:

Câu 1:

\(A=2008a^2-2008b^2\)

\(=2008\left(a^2-b^2\right)\)

\(=2008\left(a-b\right)\left(a+b\right)\)

\(B=x^2-8x+15\)

\(=x^2-3x-5x+15\)

\(=x\left(x-3\right)-5\left(x-3\right)\)

\(=\left(x-3\right)\left(x-5\right)\)

Câu 2:

\(M=\left(x-3\right)\left(x+3\right)-\left(x+2\right)^2-2\left(x^2-4,5\right)\)

\(=x^2-9-x^2-4x-4-2x^2+9\)

\(=-2x^2-4x-4\)

\(=-2\left(x^2+2x+2\right)\)

\(=-2\left[\left(x^2+2x+1\right)+1\right]\)

\(=-2\left[\left(x+1\right)^2+1\right]\)

\(=-2-2\left(x+1\right)^2\le-2< 0\)

Vậy không có giá trị nào của x thoả mãn yêu cầu.

10 tháng 10 2018

de bai dau ha ban

10 tháng 10 2018

Đề bài là gì

26 tháng 4 2018

BÀI 1:

 a)   \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

b)  \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)

\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)

\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)

\(=\frac{x+2}{x-2}\)

c)  \(A=0\)  \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)

                      \(\Leftrightarrow\) \(x+2=0\)

                      \(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)

Vậy ko tìm đc  x   để  A = 0

p/s:  bn đăng từng bài ra đc ko, mk lm cho

26 tháng 4 2018

giải nhanh giúp mik nha mn:)

1: \(\dfrac{A}{B}=\dfrac{4}{3}x^{n+1-3}y^{2-n+1}=\dfrac{4}{3}x^{n-2}y^{3-n}\)

Để A chia hết cho B thì \(\left\{{}\begin{matrix}n-2>=0\\3-n< =0\end{matrix}\right.\Leftrightarrow2< =n< =3\)

2: \(\dfrac{A}{B}=\dfrac{7}{5}x^{n-1-2}y^{5-n}-xy^{4-n}=\dfrac{7}{5}x^{n-3}y^{5-n}-xy^{4-n}\)

Để A chia hết cho B thì \(\left\{{}\begin{matrix}n-3>=0\\5-n>=0\\4-n>=0\end{matrix}\right.\Leftrightarrow3\le n\le4\)

21 tháng 12 2021

Answer:

Câu 1:

\(\left(5x-x-\frac{1}{2}\right)2x\)

\(=\left(4x-\frac{1}{2}\right)2x\)

\(=4x.2x-\frac{1}{2}.2x\)

\(=8x^2-x\)

\(\left(x^3+4x^2+3x+12\right)\left(x+4\right)\)

\(=x\left(x^3+4x^2+3x+12\right)+4\left(x^3+4x^2+3x+12\right)\)

\(=x^4+4x^3+3x^2+12x+4x^3+16x^2+12x+48\)

\(=x^4+\left(4x^3+4x^3\right)+\left(3x^2+16x^2\right)+\left(12x+12x\right)+48\)

\(=x^4+8x^3+19x^2+24x+48\)

Ta thay \(x=99\) vào phân thức \(\frac{x^2+1}{x-1}\)\(\frac{\left(99\right)^2+1}{99-1}=\frac{9802}{98}=\frac{4901}{49}\)

Ta thay \(x=4\) vào phân thức \(\frac{x^2-x}{2\left(x-1\right)}\) : \(\frac{4^2-4}{2.\left(4-1\right)}=\frac{12}{6}=2\)

\(\left(x+y\right)^2-\left(x-y\right)^2\)

\(= (x²+2xy+y²)-(x²-2xy+y²)\)

\(= x²+2xy+y²-x²+2xy-y²\)

\(= 4xy\)

\(4x^2+4x+1=\left(2x+1\right)^2=\left(2.2+1\right)^2=25\)

Câu 2:

\(x^2+x=0\)

\(\Rightarrow x\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

\(x^2.\left(x-1\right)+4-4x=0\)

\(\Rightarrow x^2.\left(x-1\right)+4\left(1-x\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x^2-4\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\)

Trường hợp 1: \(x-1=0\Rightarrow x=1\)

Trường hợp 2: \(x-2=0\Rightarrow x=2\)

Trường hợp 3: \(x+2=0\Rightarrow x=-2\)

Câu 3: Bạn xem lại đề bài nhé.

10 tháng 11 2016

Bài 1: Giả sử \(C\ge0\)

Ta có:

\(C=b^3-a^3-6b^2-a^2+9b\ge0\)

\(\Leftrightarrow\left(b^3-6b^2+9b\right)-\left(a^3+a^2\right)\ge0\Leftrightarrow b\left(b^2-6b+9\right)-a^2\left(a+1\right)\ge0\)

\(\Leftrightarrow b\left(b-3\right)^2-a^2\left(a+1\right)\ge0\)

\(a+b=3\Rightarrow b=3-a\)

\(\Rightarrow C=\left(3-a\right)\left(3-a-3\right)^2-a^2\left(a+1\right)\ge0\Leftrightarrow a^2\left(3-a\right)-a^2\left(a+1\right)=a^2\left(2-2a\right)\ge0\)

Ta có: \(a^2\ge0;a\le0\Rightarrow2a\le0\Rightarrow-2a\ge0\Rightarrow2-2a\ge2\Rightarrow C\ge0\)(luôn đúng)

Bài 2: để suy nghĩ đã á

 

 

10 tháng 11 2016

nhanh len

17 tháng 2 2018

1. cho các số thực dương x,y,z t/mãn: x2 + y2 + z2 = 1

Cmr: \(\frac{x}{y^2+z^2}\) + \(\frac{y}{x^2+z^2}+\frac{z}{x^2+y^2}\ge\) \(\frac{3\sqrt{3}}{2}\)

2. Cho x,y thỏa mãn \(\hept{\begin{cases}xy\ge0\\x^2+y^2=1\end{cases}}\)

Tìm GTNN,GTLN của \(S=x\sqrt{1+y}+y\sqrt{1+x}\)

3. Cho \(\hept{\begin{cases}xy\ne0\\xy\left(x+y\right)=x^2+y^2-xy\end{cases}}\)

Tìm GTLN của      \(A=\frac{1}{x^3}+\frac{1}{y^3}\)

4. Cho tam giác ABC; đường thẳng đi qua trọng tâm G và tâm đường tròn nội tiếp I vuông góc với đường phân giác trong của góc C. Gọi a,b,c là độ dài 3 canh tương ứng với 3 đỉnh A,B,C.

Cmr:  \(\frac{1}{a}+\frac{1}{b}\le\frac{2}{c}\)

26 tháng 2 2019

ui má. đúng mấy bài tập thầy tui cho ôn. giờ đang loay hoay