K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2021

Answer:

Câu 1:

\(\left(5x-x-\frac{1}{2}\right)2x\)

\(=\left(4x-\frac{1}{2}\right)2x\)

\(=4x.2x-\frac{1}{2}.2x\)

\(=8x^2-x\)

\(\left(x^3+4x^2+3x+12\right)\left(x+4\right)\)

\(=x\left(x^3+4x^2+3x+12\right)+4\left(x^3+4x^2+3x+12\right)\)

\(=x^4+4x^3+3x^2+12x+4x^3+16x^2+12x+48\)

\(=x^4+\left(4x^3+4x^3\right)+\left(3x^2+16x^2\right)+\left(12x+12x\right)+48\)

\(=x^4+8x^3+19x^2+24x+48\)

Ta thay \(x=99\) vào phân thức \(\frac{x^2+1}{x-1}\)\(\frac{\left(99\right)^2+1}{99-1}=\frac{9802}{98}=\frac{4901}{49}\)

Ta thay \(x=4\) vào phân thức \(\frac{x^2-x}{2\left(x-1\right)}\) : \(\frac{4^2-4}{2.\left(4-1\right)}=\frac{12}{6}=2\)

\(\left(x+y\right)^2-\left(x-y\right)^2\)

\(= (x²+2xy+y²)-(x²-2xy+y²)\)

\(= x²+2xy+y²-x²+2xy-y²\)

\(= 4xy\)

\(4x^2+4x+1=\left(2x+1\right)^2=\left(2.2+1\right)^2=25\)

Câu 2:

\(x^2+x=0\)

\(\Rightarrow x\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

\(x^2.\left(x-1\right)+4-4x=0\)

\(\Rightarrow x^2.\left(x-1\right)+4\left(1-x\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x^2-4\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\)

Trường hợp 1: \(x-1=0\Rightarrow x=1\)

Trường hợp 2: \(x-2=0\Rightarrow x=2\)

Trường hợp 3: \(x+2=0\Rightarrow x=-2\)

Câu 3: Bạn xem lại đề bài nhé.

Bài 1. Thực hiện các phép tính sau :a) \(\frac{x+3}{x+1}-\frac{x-3}{x^2-1}-\frac{2x-1}{x-1}\)b) \(\frac{1}{x\left(x+y\right)}+\frac{1}{x\left(x-y\right)}+\frac{1}{y\left(y+x\right)}+\frac{1}{y\left(y-x\right)}\)Bài 2. Phân tích đa thức sau thành nhân tử : P(x) = (x + a)(x + 2a)(x + 3a)(x + 4a) - 15a4Bài 3. Giải phương trình : x4 + 3x3 + 4x2 + 3x + 1 = 0Bài 4. Tìm GTLN và GTNN của biểu thức : \(A=\frac{3-4x}{x^2+1}\)Bài 5. Cho hình thang ABCD (AB // CD)....
Đọc tiếp

Bài 1. Thực hiện các phép tính sau :

a) \(\frac{x+3}{x+1}-\frac{x-3}{x^2-1}-\frac{2x-1}{x-1}\)

b) \(\frac{1}{x\left(x+y\right)}+\frac{1}{x\left(x-y\right)}+\frac{1}{y\left(y+x\right)}+\frac{1}{y\left(y-x\right)}\)

Bài 2. Phân tích đa thức sau thành nhân tử : P(x) = (x + a)(x + 2a)(x + 3a)(x + 4a) - 15a4

Bài 3. Giải phương trình : x4 + 3x3 + 4x2 + 3x + 1 = 0

Bài 4. Tìm GTLN và GTNN của biểu thức : \(A=\frac{3-4x}{x^2+1}\)

Bài 5. Cho hình thang ABCD (AB // CD). Các tia phân giác của góc A và góc D cắt nhau ở I; các tia phân giác của góc B và góc C cắt nhau ở J. Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh bốn điểm M, N, I, J thẳng hàng.

Bài 6. Cho hình bình hành ABCD. Trên các cạnh AB, BC, CD và DA ta dựng về phía ngoài các hình vuông lần lượt có tâm là O1, O2, O3, O4. Chứng minh tứ giác O1O2O3O4 là hình vuông.

(Các bạn có thể giải bất kì câu nào mà các bạn muốn)

0
30 tháng 1 2019

Câu 3 : 

\(a,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\)  ĐKXđ : \(x\ne\pm1\)

\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{5\left(x-1\right)}\)

\(A=\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{5\left(x-1\right)}{2x}\)

\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)

\(A=\frac{10}{x+1}\)

30 tháng 1 2019

\(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}.\)

ĐKXđ : \(x\ne0;x\ne3\)

\(B=\left(\frac{x}{3\left(x-3\right)}+\frac{2x-3}{x\left(3-x\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)

\(B=\left(\frac{x^2}{3x\left(x-3\right)}+\frac{9-6x}{3x\left(x-3\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)

\(B=\frac{x^2-6x+9}{3x\left(x-3\right)}.\frac{3x\left(x-3\right)}{x^2-6x+9}=1\)

11 tháng 2 2020

a) \(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(=\left(\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right):\left(\frac{2}{x^2-4}-\frac{x+2}{\left(x-2\right)\left(x+2\right)}\right)\)

\(=\left(\frac{2x+4}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right):\left(\frac{2}{x^2-4}-\frac{x+2}{x^2-4}\right)\)

\(=\frac{2x}{\left(x+2\right)^2}:\frac{-x}{x^2-4}=\frac{2x}{\left(x+2\right)^2}.\frac{\left(x+2\right)\left(x-2\right)}{-x}\)

\(=\frac{-2\left(x-2\right)}{\left(x+2\right)}=\frac{-2x+4}{x+2}\)

b) \(x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

+) x = 0 \(\Rightarrow A=\frac{-2.0+4}{0+2}=\frac{4}{2}=2\)

+) x = 3 \(\Rightarrow A=\frac{-2.3+4}{3+2}=\frac{-2}{5}\)

11 tháng 2 2020

bạn giúp mk câu c vs

12 tháng 3 2020

Đề thiếu x nguyên nhé bạn :)

\(x^2+10x+10=\left(x^2+10x+25\right)-15\)

Đặt \(x^2+10x+10=a^2\left(a\in Z\right)\)

Khi đó:\(\left(x+5\right)^2-a^2=15\)

\(\Leftrightarrow\left(x+5-a\right)\left(x+5+a\right)=15\)

Đến đây bạn lập ước ra ngay nhé ! Có điều hơi mệt tí,hihi !

sai rồi bạn. phải là \(a^2-\left(x+5\right)^2\)chứ

Bài 1 : Cho a + b = 1 Tính M = a 3 + b3 + 3ab(a2+b2) + 6a2b2(a+b)Bài 2 : Cho hai số dương x , y thỏa mãn x3+y3=3xy - 1 Tính giá trị biểu thức A = x2018 + y 2019 Bài 3 : Cho các số x , y thỏa mãn đẳng thức 5x2 + 5y2 + 8xy - 2x +2y +2 = 0 . Tính giá trị của biểu thức : M = ( x + y )2018 +( x-2)2019+(y+1)2020Bài 4 : Cho tam giác ABC có goác A = 90 độ , AB < AC , đường cao AH . Gọi D là điểm đối xứng của A qua H ....
Đọc tiếp

Bài 1 : Cho a + b = 1 

Tính M = a 3 + b3 + 3ab(a2+b2) + 6a2b2(a+b)

Bài 2 : Cho hai số dương x , y thỏa mãn x3+y3=3xy - 1 

Tính giá trị biểu thức A = x2018 + y 2019 

Bài 3 : Cho các số x , y thỏa mãn đẳng thức 5x2 + 5y2 + 8xy - 2x +2y +2 = 0 . Tính giá trị của biểu thức : M = ( x + y )2018 +( x-2)2019+(y+1)2020

Bài 4 : Cho tam giác ABC có goác A = 90 độ , AB < AC , đường cao AH . Gọi D là điểm đối xứng của A qua H . Đường thẳng kẻ qua D song song với AB cắt BC,AC lần ,lượt tại M,N.

a ) Tứ giác ABMD là hình gì ? Vì sao ?

b ) Chứng minh M là trực tâm tam giác ACD .

c )Gọi I là trung điiểm MC . Chứng minh :  góc HNI = 90 độ 

Bài 5 : Cho biểu thức : 

\(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\left(ĐKXĐ:x\ne0,x\ne-5\right)\)

a ) Rút gọn biểu thức trên 

b ) Tìm giá trị của x để giá trị của biểu thức =1

0
24 tháng 11 2018

2, \(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}\)

<=>\(\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)

<=>\(\frac{3}{10}x^2+\frac{2}{15}y^2+\frac{1}{20}z^2=0\)

<=>x=y=z=0

24 tháng 11 2018

4,

a, \(\frac{1}{x\left(x^2+1\right)}=\frac{a}{x}+\frac{bx+c}{x^2+1}\)

=>\(\frac{1}{x\left(x^2+1\right)}=\frac{ax^2+a+bx^2+cx}{x\left(x^2+1\right)}=\frac{\left(a+b\right)x^2+cx+a}{x\left(x^2+1\right)}\)

Đồng nhất 2 phân thức ta được:

\(\hept{\begin{cases}a+b=0\\c=0\\a=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=-1\\c=0\\a=1\end{cases}}}\)

b,a=1/4,b=-1/4

c, a=-1,b=1,c=1

\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(\left(10x+3\right):8=\left(7-8x\right):12\)

\(\left(10x+3\right).\frac{1}{8}=\left(7-8x\right).\frac{1}{12}\)

\(\frac{5}{4}x+\frac{3}{8}=\frac{7}{12}-\frac{8}{12}x\)

\(\frac{5}{4}x+\frac{8}{12}x=\frac{7}{12}-\frac{3}{8}\)

\(\frac{23}{12}x=\frac{5}{24}\)

\(x=\frac{5}{46}\)

6 tháng 3 2020

E mới lớp 6 nên giải sai thì thông cảm ạ UwU

\(b,\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)

\(< =>\frac{9x}{90}-\frac{7x}{90}=\frac{4}{5}\)

\(< =>\frac{x}{45}=\frac{32}{45}\)

\(< =>x=32\)

\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(< =>\left(10x+3\right).12=\left(7-8x\right).8\)

\(< =>120x+36=56-64x\)

\(< =>184x=56-36=20\)

\(< =>x=\frac{20}{184}=\frac{5}{46}\)

23 tháng 11 2018

\(a)\frac{2x-1}{5x-10}\)    \(\text{Đ}K:x\ne2\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\frac{1}{2}(TM)\)

\(b)\frac{x^2-x}{2x}\)    \(\text{Đ}K:x\ne0\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x.(x-1)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0(lo\text{ại})\\x=1(TM)\end{cases}}\)

\(c)\frac{2x+3}{4x-5}\)      \(\text{Đ}K:x\ne\frac{5}{4}\)

\(\Leftrightarrow2x+3=0\)

\(\Leftrightarrow x=\frac{-3}{2}(TM)\)

\(d)\frac{(x-1).(x+2)}{(x-3).(x-1)}\)    \(\text{Đ}K:\hept{\begin{cases}x\ne3\\x\ne1\end{cases}}\)

\(\Leftrightarrow(x-1).(x+2)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1(l\text{oại})\\x=-2(TM)\end{cases}}\)

gửi cho 4 câu trc

23 tháng 11 2018

dài vl