Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}=\frac{1}{1024}\)dùng phương pháp loại trừ
\(2A=1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{512}\Rightarrow2A-A=1-\frac{1}{1024}=\frac{1023}{1024}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(2A-A=\left[1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right]-\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\right]\)
\(A=1-\frac{1}{2014}=\frac{2013}{2014}\)
Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)
Đặ A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)(1)
=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)(2)
Lấy (2) trừ (1) theo vế ta có :
2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)
=> A = \(1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{20}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^9}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{10}}=\frac{1023}{1024}\)
\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{10}}=\frac{1023}{1024}\)
BẤM ĐÚNG NHÉ
\(K=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+...+\left(1-\frac{1}{1024}\right)\)
\(K=\left(1-\frac{1}{2^1}\right)+\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{2^3}\right)+...+\left(1-\frac{1}{2^{10}}\right)\)
\(K=\left(1+1+1+...+1\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
10 số 1
\(K=10-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
Đặt B
\(B=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(2B-B=1-\frac{1}{2^{10}}\)
\(B=1-\frac{1}{1024}=\frac{1023}{1024}\)
\(K=10-\frac{1023}{1024}=\frac{9217}{1024}\)
Số to wa ak
\(K=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+...+\left(1-\frac{1}{1024}\right)\)
\(K=\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{1024}\right)\)
\(K=10-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{1024}\right)\)
\(2K=20-\left(1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{512}\right)\)
\(=\frac{1023}{1024}\)nha bn
1+1/2/+1/4+1/8+...+1/1024
=1+(1-1/2)+(1/2-1/4)+(1/4-1/8)+...(1/512-1/1024)
=1+1-1/2+1/2-1/4+1/4-1/8+...+1/512-1/1024
=1+1-1/1024
=2-1/1024
=2047/1024