Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
25n(n-1)-50(n-1) luôn chia hết cho 150 với mọi n là số nguyên
giúp mình chứng minh nha . Cám ơn mấy bạn
\(16x^3y+\frac{1}{4}yz^3=\frac{1}{4}y\left(64x^3+z^3\right)=\frac{1}{4}y\left(4x+z\right)\left(16x^2-4xz+z^2\right)\)
\(=16-\left(x^2-2xy+y^2\right)\)
\(=4^2-\left(x-y\right)^2=\left(4-x+y\right)\left(4+x-y\right)\)
= \(2\left(x^2+2x+1-y^2\right)=2\left[\left(x+1\right)^2-y^2\right]=2\left(x-y+1\right)\left(x+y+1\right)\)
Lời giải:
1.
$x^3+3x^2-16x-48=(x^3+3x^2)-(16x+48)=x^2(x+3)-16(x+3)$
$=(x+3)(x^2-16)=(x+3)(x-4)(x+4)$
2.
$4x(x-3y)+12y(3y-x)=4x(x-3y)-12y(x-3y)=(x-3y)(4x-12y)=4(x-3y)(x-3y)=4(x-3y)^2$
3.
$x^3+2x^2-2x-1=(x^3-x^2)+(3x^2-3x)+(x-1)=x^2(x-1)+3x(x-1)+(x-1)$
$=(x-1)(x^2+3x+1)$
áp dụng hằng đẳng thức 7 và 3 nha dễ dàng mà . bn tách hết cho về mũ 3 hoặc mũ 2 nha
\(16x^3y+0,25yz^3=16x^3y+\frac{1}{4}yz^3\)
\(=\frac{1}{4}y\left(64x^3+z^3\right)=\frac{y}{4}\left(4x+z\right)\left(16x^2-4xz+z^2\right)\)
e) \(8\left(x+3y\right)-16x\left(x+3y\right)=\left(x+3y\right)\left(8-16x\right)=8\left(x+3y\right)\left(1-2x\right)\)
f) \(4x^2\left(x+1\right)+2x^2\left(x+1\right)=\left(x+1\right)\left(4x^2+2x^2\right)=6x^2\left(x+1\right)\)
g) \(3\left(x-y\right)-5x\left(y-x\right)=3\left(x-y\right)+5x\left(x-y\right)=\left(3+5x\right)\left(x-y\right)\)
\(16x^3y+\frac{1}{4}yz^3\)
\(\text{Phân tích thành nhân tử}\)
\(\frac{y\left(\frac{z}{2}+2x\right)\left(z^2-4xz+16x^2\right)}{2}\)