K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

Đặt

\(A=1^2+3^2+5^2+...+97^2+99^2\)

\(A=1+2^2+3^2+4^2+5^2+...+99^2\)

\(A=1+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)\)

\(A=\left(2\cdot3+3\cdot4+...+99\cdot100\right)-\left(1+2+3+...+99\right)\)

\(A=\dfrac{99\cdot100\cdot101}{3}-\dfrac{99\left(99+1\right)}{2}=333300-4950=328350\)

Còn có công thức ngắn gọn hơn nè haha

\(A=1^2+3^2+5^2+...+97^2+99^2\)

\(A=100\left(100+1\right)\cdot\dfrac{100\cdot2+1}{6}=328350\)

Chúc bn học tốt hihihihi

Tick cho mình nha vui :3

31 tháng 7 2016

\(S=1^2+2^2+3^2+...+99^2\)
\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)\)
\(=\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)-\left(1+2+3+...+99\right)\)
\(=\frac{99\cdot100\cdot101}{3}-\frac{99\cdot\left(99+1\right)}{2}\)
\(=333300-4950\)
\(=328350\)

31 tháng 7 2016

\(M=1\cdot3+3\cdot5+5\cdot7+...+97\cdot99\)
\(=3+\frac{3\cdot5\cdot\left(7-1\right)+5\cdot7\cdot\left(9-3\right)+...+97\cdot99\cdot\left(101-95\right)}{6}\)
\(=3+\frac{3\cdot5\cdot7-1\cdot3\cdot5+5\cdot7\cdot9-3\cdot5\cdot7+...+97\cdot99\cdot101-95\cdot97\cdot99}{6}\)
\(=3+\frac{-\left(1\cdot3\cdot5\right)}{6}+\frac{3\cdot5\cdot7+5\cdot7\cdot9-3\cdot5\cdot7+...+97\cdot99\cdot101-95\cdot97\cdot99}{6}\)
\(=3+-\frac{15}{6}+\frac{97\cdot99\cdot101}{6}\)
\(=3+-2,5+161650,5\)
\(=161651\)

\(A=1+3+3^2+3^3+...+3^{99}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3A-A=2A=\left(3+3^2+3^3+...+3^{100}\right)-\left(\text{​​}\text{​​}\text{​​}1+3^2+3^3+...+3^{99}\right)\)

\(\Rightarrow2A=3^{100}-1\Rightarrow A=\frac{3^{100}-1}{2}\)

còn 2 bài nữa bạn ơi

a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(\Rightarrow A+2A=2^{101}-2\)

  \(A\left(1+2\right)=2^{101}-2\)

  \(A.3=2^{101}-2\)

  \(A=\frac{2^{101}-2}{3}\)

b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3\)

\(3B=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2\)

\(\Rightarrow B+3B=3^{101}-3\)

\(B\left(1+3\right)=3^{101}-3\)

\(4B=3^{101}-3\)

   \(B=\frac{3^{101}-3}{4}\)

2 tháng 7 2018

a, \(A=...\)

=>\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

=>\(2A+A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2+2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

=>\(3A=2^{101}-2\)

=>\(A=\frac{2^{101}-2}{3}\)

b, tương tự a \(B=\frac{3^{101}+1}{4}\)

22 tháng 8 2016

A = 2100 - 299 + 298 - 297 + ... + 22 - 2

   = ( 2100 + 298 + ... + 2) - ( 299 + 297 + ... + 2 )

   = ( 2100 + 298 + ... + 2) - 2( 299 + 297 + ... + 2 ) + ( 299 + 297 + ... + 2 )

   = 299 + 297 + ... + 2 

=> 4A = 2103 + 299 + ... + 23

=> 3A = 2103 - 2

=> A = \(\frac{2^{103}-2}{3}\)

24 tháng 8 2016

a)M=2100-299+298-...+22-2

22M=2102-2101+2100-...+22-2

4M-M=2102-2101+2100-...+22-2-2100+299-...-22+2

3M=2102-2101

M=\(\frac{2^{102}-2^{101}}{3}\)

24 tháng 8 2016

chết lm sai mất òy

22 tháng 4 2020

Đặt A = 12 + 32 + 52 + ... + 972 + 992

Đặt B = 22 + 42 + 62 + ... + 982

Khi đó A + B = 12 + 22 + 32 + ... + 982 + 992

                      = 1.1 + 2.2 + 3.3 + ... + 98.98 + 99.99

                      = 1.(2 - 1) + 2(3 - 1) + 3(4 - 1) + ... + 98(99 - 1) + 99(100 - 1)

                      = 1.2 + 2.3 + 3.4 + .... + 98.99 + 99.100 - (1 + 2 + 3 + ... + 99)

                       = 1.2 + 2.3 + 3.4 + .... + 98.99 + 99.100 - 99.(99 + 1):2

                       = 1.2 + 2.3 + 3.4 + .... + 98.99 + 99.100 -  5050

Đặt C = 1.2 + 2.3 + 3.4 + .... + 98.99 + 99.100 

=> 3C = 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3 + 99.100.3

   3C   = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 98.99.(100 - 97) + 99.100.(101 - 98)

   3C   = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 98.99.100 - 97.98.99 + 99.100.101 - 98.99.100

   3C = 99.100.101

     C = 99.100.101 : 3 = 333 300

Khi đó A+ B = C - 5050 = 333 300 - 5050 = 328 250

Lại có B = 22 + 42 + 62 + ... + 982 

              = 22(12 + 22 + 32 + ... + 492)

             = 4(12 + 22 + 32 + ... + 492)

  Đặt D = 12 + 22 + 32 + ... + 492

             = 1.1 + 2.2 + 3.3 + ... + 49.49

             = 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + ... + 49(50 - 1)

             = 1.2. + 2.3 + 3.4 + ... + 49.50 - (1 + 2 + 3 + 4 + ... + 49)

              = 1.2. + 2.3 + 3.4 + ... + 49.50 - 49.(49 + 1) : 2

              = 1.2 + 2.3 + 3.4 + ... + 49.50 - 1225

  Khi đó : 1.2 + 2.3 + 3.4 + ... + 49.50 

= (1.2.3 + 2.3.3 + ... + 49.50.3) : 3

= [1.2.3 + 2.3.(4 - 1) + ... + 49.50(51 - 48)]  : 3

= (1.2.3 + 2.3.4 - 1.2.3 + ... + 49.50.51 - 48.49.50) : 3

= 49.50.51 : 3 

= 41650

Khi đó D = 41650 - 1225 = 40425

 Khi đó B = 40425 x 4 = 161700

Lại có : A + B = 328250

=> A + 161700 = 328250

=> A = 166550

Vậy 12 + 32 + 52 + ... + 972 + 992 = 166550

29 tháng 7 2017

Vế A

Ta có : A = 2100−299+298−297+...+22−2

2A = \(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

=> 2A + A = 3A = \(2^{100}-2\Rightarrow A=\dfrac{2^{100}-2}{3}\)

=================

B làm tương tự , nhân 3 lên rồi cộng lại là ra