Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ƯCLN của hai số đó là 8 nên hai số đó là bội của 8, ta giả sử a = 8m; b = 8n với ƯCLN(m, n) = 1 và do cặp số tự nhiên khác 0 nên m,n ∈ N*
Tích của hai số là 384 nên a.b = 384 hay 8m. 8n = 384
64. m. n = 384
m. n = 384: 64
m. n = 6
Ta có 6 = 1. 6 = 2. 3
Do đó (m; n) ∈ {(1;6);(6;1);(2;3);(3;2)}
Ta có bảng sau:
m | 1 | 6 | 2 | 3 |
n | 6 | 1 | 3 | 2 |
a = 8m | 8 | 48 | 16 | 24 |
b = 8n | 48 | 8 | 24 | 16 |
Vậy các cặp số tự nhiên thỏa mãn đề bài là (8; 48); (48; 8); (16; 24); (24; 16).
Giải:
VÌ ƯCLN(a;b)= 8 nên ta có: \(\left\{{}\begin{matrix}a=8k\\b=8d\end{matrix}\right.\)
Theo bài ra ta có: 8k.8d = 384
kd = 384 : (8.8)
kd = 6
Vậy kd là ước của 6; 6 = 2,3 ⇒ Ư(6) = {1; 2; 3; 6}
Lập bảng ta có:
k | 1 | 2 | 3 | 6 |
a = 8k | 8 | 16 | 24 | 48 |
d | 6 | 3 | 2 | 1 |
b = 8d | 48 | 24 | 16 | 8 |
Theo bảng trên ta có:
(a; b) = (8; 48); (16; 24); (24; 16); (48; 8)
Kết luận các cặp số thỏa mãn đề bài là:
(a; b) =(8; 48); (16; 24); (24; 16); (48; 8)
Giải:
VÌ ƯCLN(a;b)= 8 nên ta có: \(\left\{{}\begin{matrix}a=8k\\b=8d\end{matrix}\right.\)
Theo bài ra ta có: 8k.8d = 384
kd = 384 : (8.8)
kd = 6
Vậy kd là ước của 6; 6 = 2,3 ⇒ Ư(6) = {1; 2; 3; 6}
Lập bảng ta có:
k | 1 | 2 | 3 | 6 |
a = 8k | 8 | 16 | 24 | 48 |
d | 6 | 3 | 2 | 1 |
b = 8d | 48 | 24 | 16 | 8 |
Theo bảng trên ta có:
(a; b) = (8; 48); (16; 24); (24; 16); (48; 8)
Kết luận các cặp số thỏa mãn đề bài là:
(a; b) =(8; 48); (16; 24); (24; 16); (48; 8)
Đây là toán nâng cao chuyên đề ước chung và bội chung, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Vì ƯCLN(a; b) 16 nên \(\left\{{}\begin{matrix}a=16k\\b=16d\end{matrix}\right.\)(k;d) =1; k;d \(\in\) N*
Theo bài ra ta có: 16k + 16d = 96
16.(k + d) = 96
k + d = 96 : 16
k + d = 6
Lập bảng ta có:
k | 1 | 2 | 3 | 4 | 5 |
a = 16k | 16 | 80 | |||
d | 5 | 4 | 3 | 2 | 1 |
b = 16d | 80 | 16 | |||
(k; d) = 1 | TM | loại | loại | loại | TM |
Theo bảng trên ta có: (a; b) = (16; 80); (80; 16)
Kết luận vậy các cặp số a; b thỏa mãn đề bài là:
(a;b) = (16; 80); (80; 16)
Đây là toán nâng cao chuyên đề ước chung và bội chung, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Vì ƯCLN(a; b) 16 nên \(\left\{{}\begin{matrix}a=16k\\b=16d\end{matrix}\right.\)(k;d) =1; k;d \(\in\) N*
Theo bài ra ta có: 16k + 16d = 96
16.(k + d) = 96
k + d = 96 : 16
k + d = 6
Lập bảng ta có:
k | 1 | 2 | 3 | 4 | 5 |
a = 16k | 16 | 80 | |||
d | 5 | 4 | 3 | 2 | 1 |
b = 16d | 80 | 16 | |||
(k; d) = 1 | TM | loại | loại | loại | TM |
Theo bảng trên ta có: (a; b) = (16; 80); (80; 16)
Kết luận vậy các cặp số a; b thỏa mãn đề bài là:
(a;b) = (16; 80); (80; 16)
Đây là toán nâng cao chuyên đề ước chung và bội chung, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Vì ƯCLN(a; b) 16 nên \(\left\{{}\begin{matrix}a=16k\\b=16d\end{matrix}\right.\)(k;d) =1; k;d \(\in\) N*
Theo bài ra ta có: 16k + 16d = 96
16.(k + d) = 96
k + d = 96 : 16
k + d = 6
Lập bảng ta có:
k | 1 | 2 | 3 | 4 | 5 |
a = 16k | 16 | 80 | |||
d | 5 | 4 | 3 | 2 | 1 |
b = 16d | 80 | 16 | |||
(k; d) = 1 | TM | loại | loại | loại | TM |
Theo bảng trên ta có: (a; b) = (16; 80); (80; 16)
Kết luận vậy các cặp số a; b thỏa mãn đề bài là:
(a;b) = (16; 80); (80; 16)
Tiếc quá bạn ơi mk lm đc nhưng mk phải nghỉ rồi :(( facepalm
`1, abc=125
2, a=4;b=5
1. Ta có: a chia có 7 dư 3 => a - 3 chia hết cho 7
=> 4 (a - 3) chia hết cho 7 => 4a - 12 chia hết cho 7
=> 4a - 12 + 7 chia hết cho 7 => 4a - 5 chia hết cho 7 (1)
a chia cho 13 dư 11 => a - 11 chia hết cho 13
=> 4 (a - 11) chia hết cho 13 => 4a - 44 chia hết cho 13
=> 4a - 44 + 39 chia hết cho 13 => 4a - 5 chia hết cho 13 (2)
a chia cho 17 dư 14 => a - 14 chia hết cho 17
=> 4 ( a - 14) chia hết cho 17 => 4a - 56 chia hết cho 17
=> 4a - 56 + 51 chia hết cho 17 => 4a - 5 chia hết cho 17 (3)
Từ (1), (2) và (3) => 4a - 5 thuộc BC(7;13;17)
Mà a nhỏ nhất => 4a - 5 nhỏ nhất
=> 4a - 5 = BCNN(7;13;17) = 7 . 13 . 17 = 1547
=> 4a = 1552 => a= 388
2. Gọi ƯCLN(a,b) = d
=> a = d . m (ƯCLN(m,n) = 1)
b = d . n
Do a < b => m<n
Vì BCNN(a,b) . ƯCLN(a,b) = a . b
\(\Rightarrow BCNN\left(a,b\right)=\frac{a\cdot b}{ƯCLN\left(a,b\right)}=\frac{d\cdot m\cdot d\cdot n}{d}=m\cdot n\cdot d\)
Vì BCNN(a,b) + ƯCLN(a,b) = 19
=> m . n . d + d = 19
=> d . (m . n + 1) = 19
=> m . n + 1 thuộc Ư(19); \(m\cdot n+1\ge2\)
Ta có bảng sau:
d m . n +1 m . n m n a b 1 19 18 1 2 18 9 1 18 2 9
Vậy (a,b) = (2;9) ; (1 ; 18)
3.
bài 1 Tìm tất cả các cặp số tự nhiên khác 0, sao cho ƯCLN của hai số đó là 8 và tích của hai số là 384.
Vì ƯCLN của hai số đó là 8 nên hai số đó là bội của 8, ta giả sử a = 8m; b = 8n với ƯCLN(m, n) = 1 và do cặp số tự nhiên khác 0 nên m,n ∈ N*
Tích của hai số là 384 nên a.b = 384 hay 8m. 8n = 384
64. m. n = 384
m. n = 384: 64
m. n = 6
Ta có 6 = 1. 6 = 2. 3
Do đó (m; n) ∈ {(1;6);(6;1);(2;3);(3;2)}
Ta có bảng sau:
m
1
6
2
3
n
6
1
3
2
a = 8m
8
48
16
24
b = 8n
48
8
24
16
Vậy các cặp số tự nhiên thỏa mãn đề bài là (8; 48); (48; 8); (16; 24); (24; 16).
bài 2 Tìm tất cả các số tự nhiên a khác 0 và b khác 0 sao cho a + b = 96 và ƯCLN(a, b) = 16
Vì ƯCLN(a, b) = 16 ⇒ a và b là bội của 16, ta giả sử a = 16m; b = 16n với
ƯCLN(m, n) = 1 và do các số tự nhiên khác 0 nên m,n ∈ N*
Ta có a + b = 96 nên 16. m + 16. n = 96
16. (m + n) = 96
m + n = 96: 16
m + n = 6
Ta có bảng sau:
m
1
2
3
4
5
n
5
4
3
2
1
ƯCLN(m, n) = 1
TM
KTM
KTM
KTM
TM
+) Với m = 1; n = 5 ta được a = 1. 16 = 16; b = 5. 16 = 80
+) Với m = 5; n = 1, ta được a = 5. 16 = 80; b = 1. 16 = 16
Đăng à , sống đẹp lên , méc thầy nha