Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
hay OM⊥AB
O A B M H C D K F I
a/
Xét tg vuông AMO và tg vuông BMO có
MA=MB (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn)
OA=OB=R
=> tg AMO = tg BMO (2 tg vuông có 2 cạnh góc vuông bằng nhau)
\(\Rightarrow\widehat{AMO}=\widehat{BMO}\)
Xét tg MAB có
MA=MB (cmt) => tg MAB cân tại M
\(\widehat{AMO}=\widehat{BMO}\) (cmt)
\(\Rightarrow OM\perp AB\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)
Xét tg vuông AMO có
\(AM^2=MO.MH\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
b/
Ta có \(\widehat{ADC}=90^o\) (góc nt chắn nửa đường tròn) => tg ACD vuông tại D \(\Rightarrow AD\perp MC\)
Xét tg vuông AMC có
\(AM^2=MD.MC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Ta có
\(AM^2=MO.MH\) (cmt)
\(\Rightarrow MH.MO=MD.MC\)
c/ Xét tg AMK có
\(OM\perp AB\left(cmt\right)\Rightarrow OH\perp AK\)
\(AD\perp MC\left(cmt\right)\Rightarrow AD\perp MK\)
\(\Rightarrow KI\perp AB\) (trong tg 3 đường cao đồng quy)
Phần còn lại không biết điểm E là điểm nào?
a.
Ta có \(MA=MB\) (t/c hai tiếp tuyến cắt nhau)
\(OA=OB=R\)
\(\Rightarrow OM\) là trung trực AB hay OM vuông góc AB
AC là đường kính và B là điểm thuộc đường tròn \(\Rightarrow\widehat{ABC}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{ABC}=90^0\Rightarrow AB\perp BC\)
\(\Rightarrow BC||OM\) (cùng vuông góc AB)
b.
Do MA là tiếp tuyến \(\Rightarrow AM\perp AC\) hay tam giác MAC vuông tại A
AC là đường kính và K thuộc đường tròn \(\Rightarrow\widehat{AKC}\) là góc nt chắn nửa đường tròn
\(\Rightarrow\widehat{AKC}=90^0\) hay AK là đường cao trong tam giác vuông MAC
Áp dụng hệ thức lượng:
\(AC^2=CK.CM\Rightarrow CK.CM=\left(2R\right)^2=4R^2\)
c.
Em có nhầm đề ko nhỉ, vì 2 góc này hiển nhiên bằng nhau, ko cần chứng minh, do 1 góc là góc nội tiếp và 1 góc là góc tạo bởi tiếp tuyến và dây cung, cùng chắn cung BK.
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
=>OM\(\perp\)AB tại H và H là trung điểm của AB
b: Xét ΔOAM vuông tại A có AH là đường cao
nên \(HO\cdot HM=HA^2\)
=>\(HO\cdot HM=\left(\dfrac{1}{2}AB\right)^2=\dfrac{1}{4}AB^2\)
c: Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2=OD^2\left(3\right)\)
Xét ΔOIM vuông tại I và ΔOHE vuông tại H có
\(\widehat{HOE}\) chung
Do đó: ΔOIM đồng dạng với ΔOHE
=>\(\dfrac{OI}{OH}=\dfrac{OM}{OE}\)
=>\(OI\cdot OE=OH\cdot OM\left(4\right)\)
Từ (3) và (4) suy ra \(OI\cdot OE=OD^2\)
=>\(\dfrac{OI}{OD}=\dfrac{OD}{OE}\)
Xét ΔOID và ΔODE có
\(\dfrac{OI}{OD}=\dfrac{OD}{OE}\)
\(\widehat{DOE}\) chung
DO đó: ΔOID đồng dạng với ΔODE
=>\(\widehat{OID}=\widehat{ODE}=90^0\)
=>ED là tiếp tuyến của (O)