Tìm x Biết
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 10 2022

a.

$(x-2)^2-(x+1)(x+3)=-7$

$\Leftrightarrow (x^2-4x+4)-(x^2+4x+3)=-7$

$\Leftrightarrow x^2-4x+4-x^2-4x-3=-7$

$\Leftrightarrow -8x+1=-7$

$\Leftrightarrow -8x=-8$

$\Leftrightarrow x=1$

b.

$3x^2(x-7)+2(7-x)=0$

$\Leftrightarrow 3x^2(x-7)-2(x-7)=0$

$\Leftrightarrow (x-7)(3x^2-2)=0$

$\Leftrightarrow x-7=0$ hoặc $3x^2-2=0$

$\Leftrightarrow x=7$ hoặc $x=\pm \sqrt{\frac{2}{3}}$

c.

$x^3+(x+3)(x-9)=-27$

$\Leftrightarrow x^3+x^2-6x-27=-27$

$\Leftrightarrow x^3+x^2-6x=0$

$\Leftrightarrow x(x^2+x-6)=0$

$\Leftrightarrow x[x(x-2)+3(x-2)]=0$

$\Leftrightarrow x(x-2)(x+3)=0$

$\Leftrightarrow x=0$ hoặc $x-2=0$ hoặc $x+3=0$

$\Leftrightarrow x=0$ hoặc $x=2$ hoặc $x=-3$

 

AH
Akai Haruma
Giáo viên
27 tháng 10 2022

d.

$4x^2-4x+1=(x-2)^2$

$\Leftrightarrow (2x-1)^2=(x-2)^2$

$\Leftrightarrow (2x-1)^2-(x-2)^2=0$

$\Leftrightarrow (2x-1-x+2)(2x-1+x-2)=0$

$\Leftrightarrow (x+1)(3x-3)=0$

$\Leftrightarrow x+1=0$ hoặc $3x-3=0$

$\Leftrightarrow x=-1$ hoặc $x=1$

e.

$5x(x-3)-2x+6=0$

$\Leftrightarrow 5x(x-3)-2(x-3)=0$

$\Leftrightarrow (x-3)(5x-2)=0$

$\Leftrightarrow x-3=0$ hoặc $5x-2=0$

$\Leftrightarrow x=3$ hoặc $x=\frac{2}{5}$

f.

$x^2-9-4(x+3)=0$

$\Leftrightarrow (x-3)(x+3)-4(x+3)=0$

$\Leftrightarrow (x+3)(x-3-4)=0$

$\Leftrightarrow (x+3)(x-7)=0$

$\Leftrightarrow x+3=0$ hoặc $x-7=0$

$\Leftrightarrow x=-3$ hoặc $x=7$

g.

$x^2-5x=6$

$\Leftrightarrow x^2-5x-6=0$

$\Leftrightarrow (x^2-6x)+(x-6)=0$

$\Leftrightarrow x(x-6)+(x-6)=0$

$\Leftrightarrow (x-6)(x+1)=0$

$\Leftrightarrow x-6=0$ hoặc $x+1=0$

$\Leftrightarrow x=6$ hoặc $x=-1$

21 tháng 6 2016

Cô hướng dẫn nhé.

1. Nhẩm nghiệm để suy ra nhân tử .

\(27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4\)

\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)

Xem lại đề câu b, nếu ko ta dùng công thức Cardano.

2.

a. Đặt ẩn phụ.

b. \(B=\left(x+y\right)^2-\left(x+y\right)-12\). Sau đó lại đặt ẩn phụ.

c. Đặt \(x^2+x+1=t\)

d. Ghép: \(\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)+24=\left(x^2+7x+10\right)\left(x^2+7x+12\right)+24\)

Đặt \(x^2+7x+10=t\)

21 tháng 6 2016

2a. Đặt \(x^2+x=t\Rightarrow A=t^2-2t-15=t^2-5t+3t-15=\left(t-5\right)\left(t+3\right)\)

Quay lại biến x , ta có  \(\left(x^2+x-5\right)\left(x^2+x+3\right)\)

4 tháng 8 2018

\(\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)+\left(3-x\right)^2\)

\(=\left[\left(2x+1\right)-\left(3-x\right)\right]^2\)

\(=\left(3x-2\right)^2\)

p/s: chúc bạn học tốt

Bài 1 :Tìm x, biết :a) (1/1.101+1/2.102+...+1/10.110)x = 1/1.11 + 1/2.12 + ...+1/100.110b) (a+b-x)/c + (b+c-x)/a + (c+a-x)/b + 4x/a+b+c = 1Bài 2 :a) Cho x,y,z>1 và x+y+z=1Tìm giá trị nhỏ nhất của : M=(x-2)/z^2 + (y-2)/x^2 + (z-2)/y^2b) Tìm x, biết 1/(x^2+5x+6) + 1/(x^2+7x+12) + 1/(x^2 +9x+20) + 1/(x^2+11x+30) = 1/8c) Tìm x ,biet :(x+24)/1996 + (x+25)/1995 + (x+26)/1994 + (x+27)/1993 + (x+2036)/4 = 0Bài 3 a)Cho tam giác nhọn ABC, trực tâm H,M là trung điểm của...
Đọc tiếp

Bài 1 :
Tìm x, biết :
a) (1/1.101+1/2.102+...+1/10.110)x = 1/1.11 + 1/2.12 + ...+1/100.110
b) (a+b-x)/c + (b+c-x)/a + (c+a-x)/b + 4x/a+b+c = 1
Bài 2 :
a) Cho x,y,z>1 và x+y+z=1
Tìm giá trị nhỏ nhất của : M=(x-2)/z^2 + (y-2)/x^2 + (z-2)/y^2
b) Tìm x, biết 
1/(x^2+5x+6) + 1/(x^2+7x+12) + 1/(x^2 +9x+20) + 1/(x^2+11x+30) = 1/8
c) Tìm x ,biet :
(x+24)/1996 + (x+25)/1995 + (x+26)/1994 + (x+27)/1993 + (x+2036)/4 = 0
Bài 3 
a)Cho tam giác nhọn ABC, trực tâm H,M là trung điểm của BC. Qua H vẽ đường thẳng d cắt tia AB và AC lần lượt tại D và E sao cho HD=HE.
Chứng minh MH vuông góc với đương thẳng d
b)Qua điểm M nằm trên cạnh AD của hình bình hành ABCD kẻ các đường thẳng MP song song với BD , MQ song song với AC ( M khác A,D và P thuộc AB ,Q thuộc CD) . Chứng minh: diện tích tam giác BMP bằng diện tích tam giác CMQ
Bai 4
a) Cho A=222...222 (n chữ số 2,n thuộc N*).Tìm n để A là tổng bình phương hoặc hiệu bình phương của 2 số tự nhiên 
b)Cho a,b là 2 số dương có tổng bằng 1.Chứng minh: 1/(a+1) + 1/(b+1) lớn hơn hoặc bằng 4/3
Bài 5
1) Cho x,y>0 và x+y=2.Chứng minh: P=x^2.y^2.(x^2+y^2) nhỏ hơn hoặc bằng 2
2) Cho x,z thuộc Q sao cho x+y^2+z^2,X^2+y+z^2,x^2+y^2+z thuộc Z
Chứng minh: 2x thuộc Z

0
10 tháng 7 2017

Theo đề bài ta có :

\(\frac{x\left(3-x\right)}{x+1}\cdot\left(x+\frac{\left(3-x\right)}{x+1}\right)=2\)

=> \(\frac{\left(3x-x^2\right)}{x+1}\cdot\frac{\left(3-x+x^2+x\right)}{x+1}=2\)

=> \(\left(3x-x^2\right)\left(x^2+3\right)=2\left(x+1\right)^2\)

=> \(3x^3+9x-x^4-3x^2=2x^2+4x+2\)

=> \(3x^3+\left(9x-4x\right)+\left(-3x^2-2x^2\right)-x^4-2=0\)

=> \(3x^3+5x-5x^2-x^4-2=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)+2\left(x^3-1\right)=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)+2\left(x-1\right)\left(x^2+x+1\right)=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)-2\left(1-x\right)\left(x^2+x+1\right)=0\)

=> \(\left(1-x\right)\left(5x+x^3-2x^2-2x-2\right)=0\)

=> \(\left(1-x\right)\left(3x+x^3-2x^2-2\right)=0\)

=> \(\left(1-x\right)\left(x^3-x^2-x^2+x+2x-2\right)=0\)

=> \(\left(1-x\right)\left(x^2\left(x-1\right)-x\left(x-1\right)+2\left(x-1\right)\right)=0\)

=> \(\left(1-x\right)\left(x-1\right)\left(x^2-x+2\right)=0\)

Ta Thấy :

\(\left(x^2-x+2\right)=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

=> \(\hept{\begin{cases}1-x=0\\x-1=0\end{cases}}\)

=> x = 1

14 tháng 3 2016

bài 1: <=> 3x2+3x-2x2-2x+x+1=0 <=> x2+2x+1=0 <=>(x+1)2=0<=>x=-1

bài 2: =(x-3)2+1

vì (x-3)2>=0 với mọi x nên (x-3)2+1>=1 => GTNN của x2-6x+10 là 1 khi x=3