Phân tích thành nhân tử
a,(x2 + x )2 + 4x2 +...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: (x^2+x)^2+4x^2+4x-12

=(x^2+x)^2+4(x^2+x)-12

=(x^2+x+6)(x^2+x-2)

=(x^2+x+6)(x+2)(x-1)

b: =(x^2+8x)^2+22(x^2+8x)+105+15

=(x^2+8x)^2+22(x^2+8x)+120

=(x^2+8x+10)(x^2+8x+12)

=(x^2+8x+10)(x+2)(x+6)

c: =8x^2+12x-2x-3

=(2x+3)(4x-1)

16 tháng 10 2018

\(1,4x^4+4x^2y^2-8y^4\)

\(=4\left(x^4+x^2y^2-y^4-y^4\right)\)

\(=4\left[\left(x^4-y^4\right)+\left(x^2y^2-y^4\right)\right]\)

\(=4\left[\left(x^2+y^2\right)\left(x^2-y^2\right)+y^2\left(x^2-y^2\right)\right]\)

\(=4\left(x^2-y^2\right)\left(x^2+y^2+y^2\right)\)

\(=4\left(x-y\right)\left(x+y\right)\left(x^2+2y^2\right)\)

16 tháng 10 2018

\(2,12x^2y-18xy^2-30y^3\)

\(=6y\left(2x^2-3xy-5y^2\right)\)

\(=6y\left[\left(2x^2+2xy\right)-\left(5xy+5y^2\right)\right]\)

\(=6y\left[2x\left(x+y\right)-5y\left(x+y\right)\right]\)

\(=6y\left(x+y\right)\left(2x-5y\right)\)

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

1 tháng 11 2020

a,\(8x^2-8xy+2x=2x\left(4x-8y+1\right)\)

b,\(\left(x^2+2x\right)\left(x^2+4x+3\right)-24=x\left(x+2\right)\left(x+1\right)\left(x+3\right)-24\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)-24=\left(t+1\right)\left(t-1\right)-24=t^2-5^2=\left(t+5\right)\left(t-5\right)\)

\(=\left(x^2+3x+6\right)\left(x^2+3x-4\right)\)( đặt t = x2 + 3x + 1 )

8 tháng 9 2018

câu 1 

a, 5x - x 2 + 2xy - 5y 

= 5x - x 2 + xy + xy - 5y 

= ( 5x - 5y ) - ( x2 - xy ) + xy 

= 5 ( x-y ) - x(x-y ) + xy 

= (5-x) ( x-y) + xy 

mik làm dc mỗi câu a ! 

3 tháng 9 2018

Gợi ý:

a)  Đặt    \(t=x^2+x+1\)

b)  Đặt    \(t=x^2+8x+11\)

c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt:   \(t=x^2+7x+11\)

nhiều quá bạn ạ

hay bạn tìm hiểu cách thức chung làm dạng bài tìm GTNN chứ như thế này thì làm lâu lắm

19 tháng 8 2018

mik chỉ tìm hiểu đc đến câu I còn lại mik k hiểu lắm, bn có lm đc k, giúp mik vs

23 tháng 6 2016

Cô hướng dẫn câu tìm x:

\(\left(x^2-4x\right)^2-8\left(x^2-4x\right)+15=0\)

Đặt \(x^2-4x=t\), pt trở thành \(t^2-8t+15=0\Leftrightarrow\left(t-3\right)\left(t-5\right)=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=5\end{cases}}\)

Với t = 3, ta có phương trình \(x^2-4x=3\Leftrightarrow x^2-4x-3=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{7}+2\\x=-\sqrt{7}+2\end{cases}}\)

Với t = 5, ta có \(x^2-4x=5\Leftrightarrow x^2-4x-5=0\Leftrightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)

23 tháng 6 2016

vâng em cảm ơn cô ạ

30 tháng 10 2016

\(x^3-x^2-5x+125\)

\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

\(x^6-x^4-9x^3+9x^2\)

\(=x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)

\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)

\(=x^2\left(x-1\right)\left[x^2\left(x+1\right)-9\right]\)

\(=x^2\left(x-1\right)\left(x^3+x^2-9\right)\)

\(x^4-4x^3+8x^2-16x+16\)

\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)\)

\(=\left(x^2+4\right)\left(x^2+4-4x\right)\)

\(=\left(x^2+4\right)\left(x-2\right)^2\)

\(3a^2-6ab+3b^2-12c^2\)

\(=3\left(a^2-2ab+b^2-4c^2\right)\)

\(=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]\)

\(=3\left(a-b+2c\right)\left(a-b-2c\right)\)

30 tháng 10 2016

cảm ơn bạn nha!eoeo

15 tháng 7 2016

b )=x4-2x3-2x3+4x2+4x2-8x-8x+16

=x3(x-2)-2x2(x-2)+4x(x-2)-8(x-2)

=(x-2)(x3-2x2+4x-8)

=(x-2)[x2(x-2)+4(x-2)]

=(x-2)2(x2+4)

15 tháng 7 2016

a) đề thiếu ko bn?

b) \(x^4-4x^3+8x^2-16x+16=\left(x^4-4x^2\right)-\left(4x^3-12x^2+8x\right)-\left(8x-16\right)\)

 \(=x^2\left(x-2\right)\left(x+2\right)-4x\left(x^2-3x+2\right)-8\left(x-2\right)\)

\(=x^2\left(x-2\right)\left(x+2\right)-4x\left(x-2\right)\left(x-1\right)-8\left(x-2\right)\)

\(=\left(x-2\right)\left[x^2\left(x+2\right)-4x\left(x-1\right)-8\right]=\left(x-2\right)\left(x^3-2x^2+4x-8\right)\)

\(=\left(x-2\right)\left[\left(x^3-8\right)-\left(2x^2-4x\right)\right]=\left(x-2\right)\left[\left(x-2\right)\left(x^2+2x+4\right)-2x\left(x-2\right)\right]\)

\(=\left(x-2\right)\left(x-2\right)\left(x^2+2x+4-2x\right)=\left(x-2\right)^2\left(x^2+4\right)\)